

ROUTE Curriculum 300-101

Labs powered by

ROUTE

300-101 Curriculum

LM20170830/BV1.0

25 Century Blvd., Ste. 500, Nashville, TN 37214 | Boson.com

The labs referenced in this book have been printed in the Boson Lab Guide, which is included with the purchase of the curriculum. These labs can be performed with real Cisco hardware or in the Boson NetSim Network Simulator version 11 or later. To learn more about the benefits of using NetSim or to purchase the software, please visit www.boson.com/netsim.

Copyright © 2017 Boson Software, LLC. All rights reserved. Boson, Boson NetSim, Boson Network Simulator, and Boson Software are trademarks or registered trademarks of Boson Software, LLC. Catalyst, Cisco, and Cisco IOS are trademarks or registered trademarks of Cisco Systems, Inc. in the United States and certain other countries. Media elements, including images and clip art, are the property of Microsoft. All other trademarks and/or registered trademarks are the property of their respective owners. Any use of a third-party trademark does not constitute a challenge to said mark. Any use of a product name or company name herein does not imply any sponsorship of, recommendation of, endorsement of, or affiliation with Boson, its licensors, licensees, partners, affiliates, and/or publishers.

Overview	
Over view	
Socurity Post Prostings	
Configuring on Enable Deceword	
Conving Desewords Retwoon Devices	
Accessing Cisco Devices	
Protecting CON VTX and AUX Ports	
Configuring User Names and Passwords	1
Configuring Privilege Levels	
Authenticating with AAA	۱ ۱ ^۰
RADIUS vs. TACACS+	
Configuring AAA	
Configuring AAA and RADIUS	
Configuring AAA and TACACS+	
Configuring Authorization and Accounting	2
Configuring IPv4 ACI s to Control Remote Access	2
Configuring IPv6 ACLs to Control Remote Access	2
Requiring SSH for Remote Access	2
Logaina	24
Understanding NTP	2
How NTP Stratum Works	
Configuring the System Clock and NTP	2
Configuring NTP Peers	
Verifying NTP	
NTP Security	
Configuring a Specific Source Interface	
Authenticating NTP Time Sources	
Configuring NTP Restrictions	
NTP Version 4 and IPv6	
Configuring Log Severity Levels	
Configuring and Using a Logging Server	
Monitoring	
Understanding debug Commands	4
Understanding SNMP	
Using SNMP Data	
SNMP Views	
SNMP Versions	
SNMP Feature Comparison	
Configuring SNMPv1 and SNMPv2c	
Configuring SNMPv3	
Verifying SNMPv3	

Understanding NetFlow	
Configuring NetFlow	
Viewing NetFlow Data	
Understanding IP SLAs	
Configuring IP SLA Echo	
Verifying IP SLA	
IP SLA Responders	63
Configuring IP SLA Jitter with Responder	64
IP SLA Authentication	65
Disabling or Replacing Unused Services	66
Review Question 1	
Review Question 2	
Review Question 3	
Lab Exercises	
Module 2: Basic Data Forwarding Concepts	77
Overview	
Objectives	
Content in these modules is available in the	full version of the 79
User Datagram Protocol	more information ⁸⁰
Curricululli. I lease visit www.bbsbii.com ioi	more miormation. ₈₁
The TCP Three-way Handshake	
Path MTU Discovery	
MSS Adjustment	
Windowing	
Sliding Windowing	
Selective Acknowledgments	
Window Scaling	
TCP Congestion Avoidance Issues	
Tail Drop	
Global Synchronization	
TCP Starvation/UDP Dominance	
Understanding IPv4 and IPv6 Addressing	
Traffic Types	
IPv6 Traffic Types	
IPv6 Address Composition	
IPv6 Address Prefixes	
IPv6 Address Types	
Understanding DHCPv4	
DHCP Discover	
DHCP Offer	
DHCP Request	
DHCP Acknowledgment	

IPv6 Address Configuration	
EUI-64 Interface IDs	
Understanding Stateful and Stateless Address Configuration	
How DHCPv6 Works	
Stateful DHCPv6	
Stateless DHCPv6 with SLAAC	
Configuring a DHCPv4 Client	
Configuring Automatic IPv6 Addressing on Clients	
Configuring a DHCP Server	
Configuring DHCP Server Options	
Other DHCP Options	
Configuring DHCP Relay	
Understanding NAT/PAT	
NAT/PAT Address Terminology	
NAT Translation Methods	
Static NAT	
Dynamic NAT	
Port Address Translation	
Content in these modules is available in the fu	ll version of the ¹²⁵
curriculum Please visit www.boson.com for m	ore information ¹²⁶
Configuring Dynamic NAT	127
Configuring PAT	
NPTv6	
Using IPv6 in an IPv4 World	
Dual Stack	
NAT-PT and NAT64	
Tunneling	
ICMP	
Important ICMP Message Types	
Routing Fundamentals	
Understanding Router Path Selection	
Router Packet Switching	
Displaying Tables	
Clearing Tables	
Understanding Static Routes	
Understanding IPv6 Static Routes	
Understanding Dynamic Routes	
Understanding Administrative Distance	
Understanding Routing Metrics	
Understanding Autonomous Systems	
Understanding Routing Protocols	
Understanding the Types of IGPs	
Understanding Distance-Vector Routing Protocols	

Ecanning Distance-vector Routes	
Updating Distance-Vector Routes	
Preventing Distance-Vector Problems	
Understanding the Counting to Infinity Problem	
Understanding Maximum Counts	
Understanding Routing Loops	
Preventing Routing Loops	
Understanding Link-State Routing Protocols	
Understanding Link-State Relationships	
Understanding the LSDB	
Learning Link-State Routes	
Review Question 1	
Review Question 2	
Review Question 3	
Review Question 4	
Lab Exercises	
Module 3: Understanding RIP	185
	100
Curriculum Please visit www.boson.con	n for more information ¹⁸⁶
	187
Route Processing	
Routing Messages	
Configuring the RIP Routing Process	
Configuring Interface Parameters	
Verifying RIP Operation	
RIP for IPv6	
RIPng Similarities to RIPv2	
RIPng Differences from RIPv2	
Enabling IPv6 Routing	
Creating a RIPng Routing Process	
Configuring the RIPng Routing Process	
Configuring RIPng on Each Interface	
Verifying RIPng Operation	
Displaying General RIPng Protocol Parameters	
Displaying Detailed RIPng Process Parameters	
Displaying the RIPng Database	
Displaying RIPng Neighbor Addresses	
Displaying Installed RIPng Routes	
Securing RIPng	

Review Question 1	
Review Question 2	
Review Question 3	
Lab Exercises	
Module 4: Understanding OSPF	
Overview	
Objectives	
OSPF for IPv4	
Route Processing	
OSPF Router Roles	
OSPF Interface Types	
Understanding the OSPF Router ID	
Understanding Adjacency	
Understanding the OSPF Hello Packet	
DR/BDR Election	
Neighbor States	
Adjacency Caveats	
Content in these modules is available in	n the full version of the ²⁴¹
curriculum. Please visit www.boson.com	m for more information $^{242}_{}$
Basic OSPF Area Types	245
Advanced OSPF Area Types	247
Configuring OSPF	
Configuring the Routing Process	
Configuring Areas	
Configuring Routing Process Parameters	
Configuring Interface Parameters	
Verifying OSPF Operation	
Examining General OSPF Protocol Information	
Examining Detailed OSPF Protocol Information	
Examining OSPF Interface Information	
Examining OSPF Costs	
Examining OSPF Neighbors	
Verifying Installed OSPF Routes	
Examining the LSDB	
Type 1 LSAs	
Self-originated Type 1 LSAs	
Type 2 LSAs	
Type 3 LSAs	
Type 4 LSAs	
Type 5 LSAs	
Securing OSPFv2	

OSPF for IPv6	
OSPFv3 Similarities to OSPFv2	
OSPFv3 Differences from OSPFv2	
OSPFv3-Specific LSAs	
Configuring OSPFv3	
Enabling IPv6 Routing	
Configuring an OSPFv3 Routing Process: Traditional Commands	
Configuring OSPFv3 on Each Interface: Traditional Commands	
Configuring an OSPFv3 Routing Process: New Commands	
Configuring OSPFv3 on Each Interface: New Commands	
Verifying OSPFv3 Operation	
Displaying General OSPFv3 Protocol Parameters	
Displaying Detailed OSPFv3 Protocol Parameters	
Displaying OSPFv3 Neighbor Addresses	
Displaying Installed OSPFv3 Routes	
Displaying the OSPF LSDB	
Securing OSPFv3	
Review Question 1	
Contant in these modules is evailable in the f	ull version of the29
curriculum. Please visit www.boson.com for r	nore information,
content in these modules is available in the r curriculum. Please visit www.boson.com for r dule 5: Understanding EIGRP.	nore information ²⁹
Content in these modules is available in the r curriculum. Please visit www.boson.com for r dule 5: Understanding EIGRP	nore information ²⁹
Content in these modules is available in the r curriculum ³ Please visit www.boson.com for r dule 5: Understanding EIGRP	nore information ²⁹ 29 30
Content in these modules is available in the r curriculum. Please visit www.boson.com for r dule 5: Understanding EIGRP Overview Objectives EIGRP for IPv4	nore information ²⁹ 29 30 30 30
Content in these modules is available in the r curriculum ³ Please visit www.boson.com for r dule 5: Understanding EIGRP Overview Objectives EIGRP for IPv4 Route Processing	nore information ²⁹ 29 30 30 30 30 30
Content in these modules is available in the r curriculum. Please visit www.boson.com for r dule 5: Understanding EIGRP Overview Objectives EIGRP for IPv4 Route Processing. Understanding EIGRP Path Selection	nore information ²⁹ 29 30 30 30 30 30 30 30 30 30 30 30
Content in these modules is available in the r Review Outsion ³ Please visit www.boson.com for r dule 5: Understanding EIGRP Overview Objectives EIGRP for IPv4 Route Processing. Understanding EIGRP Path Selection Understanding Advertised Distance and Feasible Distance.	nore information ²⁹ 29 30 30 30 30 30 30 30 30 30 30 30 30 30
Content in these modules is available in the r Curriculum. ³ Please visit www.boson.com for r ab Exercises dule 5: Understanding EIGRP Overview Objectives EIGRP for IPv4 Route Processing. Understanding EIGRP Path Selection Understanding Advertised Distance and Feasible Distance Using Variance to Load Balance EIGRP	nore information ²⁹ 29 30 30 30 30 30 30 30 30 30 30 30 30 30
Content in these modules is available in the r Review Outsion ³ Please visit www.boson.com for r dule 5: Understanding EIGRP Overview Objectives EIGRP for IPv4 Route Processing. Understanding EIGRP Path Selection Understanding EIGRP Path Selection Understanding Advertised Distance and Feasible Distance Using Variance to Load Balance EIGRP. Routing Messages	nore information ²⁹ 29 30 30 30 30 30 30 30 30 30 30 30 30 30
Review Outsion 3 Please visit www.boson.com for n Curriculum. Please visit www.boson.com for n dule 5: Understanding EIGRP. Overview. Objectives EIGRP for IPv4 Route Processing. Understanding EIGRP Path Selection Understanding Advertised Distance and Feasible Distance Using Variance to Load Balance EIGRP. Routing Messages EIGRP Message Types	nore information ²⁹ 29 30 30 30 30 30 30 30 30 30 30 30 30 30
Content infutiese modules is available in the f Review Outsion 3 Please visit www.boson.com for r Lab Exercises dule 5: Understanding EIGRP Overview Objectives EIGRP for IPv4 Route Processing Understanding EIGRP Path Selection Understanding Advertised Distance and Feasible Distance Using Variance to Load Balance EIGRP Routing Messages EIGRP Message Types Understanding the EIGRP Router ID	nore information ²⁹ 29 30 30 30 30 30 30 30 30 30 30 30 30 30
Review Ougstion 3 Please visit www.boson.com for n Curriculum. Please visit www.boson.com for n Lab Exercises dule 5: Understanding EIGRP Overview Objectives EIGRP for IPv4 Route Processing Understanding EIGRP Path Selection Understanding Advertised Distance and Feasible Distance Using Variance to Load Balance EIGRP Routing Messages EIGRP Message Types Understanding the EIGRP Router ID Understanding Adjacency	nore information ²⁹ 29 30 30 30 30 30 30 30 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31
Content in these modules is available in the frequencies Review Question 3 Please visit www.boson.com for r Lab Exercises dule 5: Understanding EIGRP Overview Objectives EIGRP for IPv4 Route Processing Understanding EIGRP Path Selection Understanding Advertised Distance and Feasible Distance Using Variance to Load Balance EIGRP Routing Messages EIGRP Message Types Understanding the EIGRP Router ID Understanding Adjacency Adjacency Caveats	nore information ²⁹ 29 30 30 30 30 30 30 30 30 30 30 30 30 30
Review Quastion 3 Please visit www.boson.com for n Review Quastion 3 Please visit www.boson.com for n Lab Exercises Inderstanding EIGRP Overview Objectives EIGRP for IPv4 Route Processing. Understanding EIGRP Path Selection Understanding Advertised Distance and Feasible Distance Using Variance to Load Balance EIGRP Routing Messages EIGRP Message Types Understanding the EIGRP Router ID. Understanding Adjacency Adjacency Caveats Forming a Neighbor Relationship Forming a Neighbor Relationship	nore information ²⁹ 29 30 30 30 30 30 30 30 30 30 30 30 31 31 31 31 31 31 31 31 31 31 31 31 31
Review Outstion 3 Please visit www.boson.com for r Review Outstion 3 Please visit www.boson.com for r Cab Exercises dule 5: Understanding EIGRP Overview Objectives EIGRP for IPv4 Route Processing Understanding EIGRP Path Selection Understanding Advertised Distance and Feasible Distance Using Variance to Load Balance EIGRP Routing Messages EIGRP Message Types Understanding the EIGRP Router ID Understanding Adjacency Adjacency Caveats Forming a Neighbor Relationship Understanding Query Messages	nore information ²⁹ 29 30 30 30 30 30 30 30 30 30 30 30 30 30
Review Quastion 3 Please visit www.boson.com for r Review Quastion 3 Please visit www.boson.com for r Cab Exercises dule 5: Understanding EIGRP Overview Objectives EIGRP for IPv4 Route Processing Understanding EIGRP Path Selection Understanding Advertised Distance and Feasible Distance Using Variance to Load Balance EIGRP Routing Messages EIGRP Message Types Understanding Adjacency Adjacency Caveats Forming a Neighbor Relationship Understanding Query Messages Understanding EIGRP Stub Routers	nore information ²⁹ 29 30 30 30 30 30 30 30 30 30 30 30 30 30
Content miztnese modules is available in the frequencies of the second s	nore information ²⁹ 29 30 30 30 30 30 30 30 30 30 30 30 30 30
Content miztnese modules is available in the recurriculum. Please visit www.boson.com for relate Exercises dule 5: Understanding EIGRP	nore information ²⁹ 29 30 30 30 30 30 30 30 30 30 30 30 30 30
Configuring LIGRP Stub Routers IS available III the Treater State of the second	nore information ²⁹ 29 30 30 30 30 30 30 30 30 30 30 30 30 30
Content in these modules is available in the respective cultures. Please visit www.boson.com for result to be a service of the	nore information ²⁹
Content mining a Neighbor Relationship. Understanding the EIGRP Router ID. Understanding the EIGRP Router ID. Understanding the EIGRP Router ID. Understanding the EIGRP Router ID. Understanding Adjacency. Adjacency Caveats. Forming a Neighbor Relationship. Understanding EIGRP Stub Routers. Configuring the Routing Process. Configuring the Routing Process. Configuring the Routing Process. Configuring Interface Parameters. Verifying EIGRP for IPv4 Operation.	nore information ²⁹

Examining EIGRP Interface Information	
Examining EIGRP Neighbors	
Verifying Installed EIGRP Routes	
Examining the EIGRP Topology Table (Successors and FS Only)	
Examining the EIGRP Topology Table (Entire Table)	
Verifying and Troubleshooting EIGRP	
Securing EIGRP	
EIGRP for IPv6	
EIGRP for IPv6 Similarities to EIGRP for IPv4	
EIGRP for IPv6 Differences from EIGRP for IPv4	
Configuring EIGRP for IPv6	
Enabling IPv6 Routing	
Configuring an EIGRP for IPv6 Routing Process	
Configuring EIGRP for IPv6 on Each Interface	
Verifying EIGRP for IPv6 Operation	
Displaying General EIGRP for IPv6 Protocol Parameters	
Displaying EIGRP for IPv6 Interface Parameters	
Displaying EIGRP for IPv6 Neighbor Addresses	
Content in these modules is available in the full versi	on of the ³⁴⁹
curriculum. Please visit www.boson.com for more inf	ormation ³⁵⁰
Named Mode for FIGRP	352
Named Mode Configuration Modes	353
Configuring a Named Mode Configuration	354
Configuring Interface-Specific Parameters	
Configuring Named Mode Authentication	
Configuring Topology-Specific Parameters	
Review Question 1	
Review Question 2	
Review Question 3	
Lab Exercises	
Module 6: Advanced Data Forwarding Concepts	
	370
Objectives	370
Asymmetric Routing	
Redistribution	
Seed Metrics	
Assigning Seed Metrics	
Changing the Default Seed Metric	
Redistribution Examples	
OSPF Type 1 and Type 2 External Routes	
Controlling Route Information and Path Selection	

ACL Review	
Configuring Standard ACLs	
Configuring Extended ACLs	
Configuring a Time Range for an ACL	
Distribute Lists	
Prefix Lists	
Route Maps	
Route Tags	
Route Summarization	
EIGRP Route Summarization	
OSPF Route Summarization	
uRPF Overview	
Enabling uRPF	
Remote Access and VPN Technologies	
PPP Overview	
Establishing PPP Links	
Configuring PPP on an Interface	
Configuring PPP Authentication	
Content in these modules is available in the fu	all version of the413
curriculum Please visit www.boson.com.for.n	nore information ⁴¹⁴
Configuring CHAP Authentication	416
Configuring PAP and CHAP on the Same Interface	
PPPoE	
PPPoE Limitations	
PPPoE Stages	
PPPoE Discovery Stage	
Configuring PPPoE	
Verifying PPPoE	
Frame Relay	
Verifying Frame Relay Maps	
Frame Relay Interfaces	
Understanding GRE Tunnels	
Differences Between Secure VPNs and GRE Tunnels	
Configuring GRE Tunnels	
Verifying GRE Tunnels	
DMVPN	
DMVPN Hub-and-Spoke Topology (Phase 1)	
DMVPN Spoke-to-Spoke Topology (Phase 2 and Phase 3)	
VRF-lite	
Cisco EVN	
Cisco EVN Interfaces	
Review Question 1	
Review Question 2	

Review Question 3	
Lad Exercises	
Module 7: Understanding BGP	
Overview	
Objectives	
Autonomous Systems	
AS Numbers	
Public IP Addressing	
Single-homed, Dual-homed, and Multihomed ASes	
Single-homed ISP Connectivity	
Dual-homed ISP Connectivity	
Multihomed ISP Connectivity	
BGP for IPv4	
BGP Peering	
BGP Neighbor Messages	
eBGP Peers vs. iBGP Peers	
Content in these modules is available in the full v	ersion of the ⁴⁶⁷
curriculum. Please visit www.boson.com for more	information.
BGP Paul Selection	
Creating a PCD Pouting Process	
Specifying Local Networks to Advertise	472
Configuring Peer Information	
Configuring Peer Groups	475
Sample Peer Group Configuration	476
Verifying BGP Operation	477
Verifying General BGP Information	478
Verifying BGP Status and Peer Information	479
Verifying BGP Peer Details	480
Verifying BGP Routing Information	
Verifying BGP Routes	
Path Selection and Manipulation	
BGP Next Hop	
Changing the Default Next-Hop Behavior for an iBGP Peer	
Modifying the Weight Attribute	
Modifying the Weight Attribute by Using a Route Map	
Modifying the Local Preference Attribute	
Modifying the Local Preference by Using a Route Map	
Modifying the AS-path Attribute	
Modifying the MED Attribute	
Modifying the MED Attribute by Using a Route Map	

Securing BGP	
BGP for IPv6	
IPv4 BGP Sessions	
IPv6 BGP Sessions	
Verifying BGP for IPv6	
Review Question 1	
Review Question 2	
Review Question 3	
Lab Exercises	
ndex	

Content in these modules is available in the full version of the curriculum. Please visit www.boson.com for more information.

Module 1

Basic Router Security and Management

Overview

Network systems face a number of threats from both internal and external sources. This module will explore some of the methods that administrators can use to secure routers. You will also be exposed to several network management and monitoring tools that you can use to detect network problems before they become serious.

Objectives

After completing this module, you should have the basic knowledge required to complete all of the following tasks:

- Learn about security best practices, including how to configure passwords.
- Understand how to access and require authentication for Cisco devices.
- Understand various logging methods that are available for Cisco devices.
- Understand, configure, and verify Network Time Protocol (NTP).
- Understand and configure logging.
- Understand the capabilities and drawbacks of **debug** commands.
- Understand and configure Simple Network Management Protocol (SNMP) versions 1, 2c, and 3.
- Understand, configure, and use NetFlow.
- Understand and configure IP Service Level Agreements (SLAs).
- Learn how to disable or replace unused services.

Security Best Practices

Security best practices, at their core, involve limiting access to the router or the network to which it is connected. There are several mechanisms that can be used to secure administrative access to a Cisco device. At the simplest level, the device should require authentication for access to the console or any of its terminal lines. Ideally, the device should accept only encrypted connections so that passwords and other configuration information are not transmitted in clear text. If possible, user names and passwords should be assigned to allow only specific users access to the device.

This section covers how to configure and encrypt an enable password as well as how to copy passwords between devices.

Configuring an Enable Password

By default, privileged EXEC mode on a Cisco device provides unrestricted access to every available IOS command. The simplest way to prevent an authorized user from accessing these commands is to assign an enable password. If an enable password is configured, the device will issue a password prompt when a user attempts to access privileged EXEC mode. You can issue the **enable password** *password* command to configure an enable password. By default, the **enable password** command stores an unencrypted password in the device's configuration file, as shown in the following sample output from the **show running-config** command:

enable password cisco

By contrast, the **enable secret** command stores an encrypted password in the device's configuration file using an Secure Hash Algorithm (SHA)-256 hash. The syntax for the **enable secret** command is **enable secret** [**level** *level*] {*password* | [*encryption-type*] *encrypted-password*}, where *password* is a string of characters. The optional **level** parameter specifies the privilege level for which the encrypted password should be used. If both the **enable password** and **enable secret** commands are in the running configuration of a Cisco device, the device will ignore the password associated with the **enable password** command. The following sample output from the **show running-config** command shows both a password that has been encrypted by the **enable secret** command and an unencrypted password from the **enable password** command:

enable secret 5 \$1\$7nZu\$J8bk/JkdJ8rPJUGKNk3im/
enable password cisco

Many password commands in the running configuration use an integer to indicate the type of encryption that was used to protect the password. For example, a 0 indicates that the password is unencrypted, a 5 indicates the

password is a Message Digest 5 (MD5) hash, and a 7 indicates that the password was encrypted using Cisco's original password algorithm. The following sample output from the **show running-config** command shows each of these types of passwords:

enable secret 5 \$1\$7nZu\$J8bk/JkdJ8rPJUGKNk3im/
enable password 7 130019130900013A2A373B243A3017
username tester password 0 testerpassword

Encrypting Unencrypted Passwords

Except for the password you create by issuing the **enable secret** command, all Cisco passwords are stored as clear text by default, including the **enable** password, **username** passwords, line passwords, and routing protocol passwords. When the **service password-encryption** command is issued, existing and future enable, console, and virtual terminal (VTY) passwords are encrypted by using a Vigenère cipher. This cipher does not provide a high level of encryption, but it is better than storing clear-text passwords. Issuing the **no service password-encryption** command causes future passwords to be stored as clear text but will not decrypt existing passwords.

Copying a p	assword that is protecte	ed by service	password-encry	ption
RouterA	config)#enable	password	7 hash	
Copying and	encrypting a password	d that is prote	cted by service	password-encryption
RouterA	config)#enable	secret 7	hash	
Copying an	encrypted password that	at is protecte	d as an SHA-256	hash
RouterA	config)#enable	secret 4	hash	
Copying an	encrypted password the	at is protecte	d as an MD5 has	h
PoutorA	config)#enable	secret 5	hash	

Copying Passwords Between Devices

You can copy encrypted passwords between devices even if you do not know the clear-text translation of the password simply by copying the hash. For example, consider the following router output:

enable password 7 130019130900013A2A373B243A3017

This password has been encrypted by the **service password-encryption** command. If you issue the **enable password 7 130019130900013A2A373B243A3017** command on another router, the enable password will be the same on both routers. This method also works for passwords that have been hashed by SHA-256 or MD5 by indicating the appropriate encryption type in the command.

Accessing Cisco Devices

You can add another layer of authentication by requiring a password for console (CON) access, VTY access, or auxiliary (AUX) port access. If you configure an **enable password** and a line password, a user would be required to issue two passwords to make configuration changes to a device. For example, an administrator who is accessing the device by using Telnet might need to first issue the VTY password to connect to the device and then issue the **enable password** command to make configuration changes. The **enable password** should never be the same as the line password.

Hoson

Selecting on	e or more lines
RouterA(config)#line con 0
RouterA(config)#line vty 0 4
RouterA(config)#line aux 0
Configuring	a password
RouterA(config-line)#password cisco
Configuring	a login prompt
RouterA(config-line) #login

Protecting CON, VTY, and AUX Ports

You can issue the **password** command from line configuration mode to specify a password for the CON port, one or more VTY lines, or the AUX line. Once a password has been configured, you can then issue the **login** command to specify that a user must authenticate before access to the device is granted. If the **login** command is issued and a password has not been configured, the device will be inaccessible through the point of access until a password has been configured.

Line passwords, like most passwords configured on Cisco devices, are not encrypted by default. Because the passwords are stored in an unencrypted state, anyone who can access the configuration files will have access to the stored passwords. This is of even greater concern if the configuration files are stored remotely, such as on a Trivial File Transfer Protocol (TFTP) server.

Configuring User Names and Passwords

You can configure a Cisco device to require both a user name and a password for authentication. User accounts provide an additional level of granularity for both logging and access control. The account information can be stored locally on the device or remotely, such as on a Remote Authentication Dial-In User Service (RADIUS) server. You should issue the **username** command to specify the user name for a particular account. The syntax of the **username** command is **username** *user-name* **password** *password*, where *user-name* is the account name and password is the associated password. Alternatively, you can issue the **username** command with the **secret** keyword instead of the **password** keyword. The **secret** keyword specifies that the password string should be encrypted using strong encryption. If the **password** keyword is used and the password encryption service is not running, the password string will be stored as plain text. The following sample output from the **show running-config** command indicates a user name of *tester* with an unencrypted password and a user name of *secrettester* with a password that has been encrypted by the MD5 algorithm:

```
username tester password 0 testerpassword
username secrettester secret 5 $1$oa0a$9Gtp.JjvzsfesgRUq5zJW.
```

You can issue the **login local** command from line configuration mode to configure a Cisco device to use the local user database for authentication on a particular terminal line, or on the CON or AUX ports.

Levels 0 through 15Privilege level is set to 15 by default					
onfiguring RouterA	a user with privilege leve (config) #username	14 admin	privilege	4 1	bassword boson
	-				·
OF	R				

Configuring Privilege Levels

You can configure user accounts with privilege levels, which work the same way as **enable password** privilege levels do. You can create multiple privilege levels, from level 0 through level 15, to more granularly specify the commands that users can issue. Privilege level 15 is granted to a user if the privilege level has not been explicitly configured, which indicates that all commands are available to the user.

Privilege level 1 grants access similar to what you have before you issue the **enable** command. All lines (CON, AUX, and VTY) default to privilege level 1.

Privilege level 0 grants access to only the following commands:

- disable
- enable
- exit
- help
- logout

By default, all of the commands on a Cisco router are configured for privilege level 0, privilege level 1, or privilege level 15. A user can access any command at the user's privilege level and below.

You can change the privilege level for individual commands to granularly provide access or to increase security. However, the five commands at level 0 cannot be changed. The National Security Agency (NSA) recommends moving the following commands from level 1 to level 15:

- connect
- telnet
- rlogin
- show ip access-lists
- show logging

Authenticating with AAA

Access controls use varying methods of Authentication, Authorization, and Accounting (AAA) to verify the identity of a user, prevent unauthorized access to sensitive data, and record user activity on a system. External AAA servers, such as a RADIUS server or a Terminal Access Controller Access-Control System Plus (TACACS+) server, take the burden of authentication off local devices by centralizing identity-based authentication for an entire network regardless of the network location of the device requesting the network service or the device hosting the service.

The following list defines the three phases of the AAA process:

- Authentication the process of verifying a user's identity
- Authorization the process of verifying the level of access configured for a user
- Accounting the process of recording the use of resources

Boson

RADIUS	TACACS+		
IETF-standard AAA protocol	Cisco-proprietary AAA protocol		
Combines AAA authentication and authorization operations	Separates each AAA operation from the others		
Encrypts password in packet	Encrypts the entire contents of the packet		
Uses UDP port 1812 for authentication	Uses TCP port 49 for all operations		
Uses UDP port 1813 for accounting	Can be configured to do authorization and accounting only		

RADIUS vs. TACACS+

RADIUS is a standard AAA protocol created by the Internet Engineering Task Force (IETF). Compared to TACACS+, RADIUS has several limitations. For example, RADIUS encrypts only the password in Access-Request packets; it does not encrypt the entire contents of the packet like TACACS+ does. RADIUS, not TACACS+, uses User Datagram Protocol (UDP) for packet delivery. UDP port 1812 is used for authentication and authorization. UDP port 1813 is used for accounting. Some older RADIUS servers might use ports 1645 and 1646 instead. RADIUS is often used as the transport protocol for Extensible Authentication Protocol (EAP) devices, such as 802.1X-enabled wireless networks, because RADIUS is capable of encapsulating EAP.

TACACS+ is a Cisco-proprietary protocol used during AAA operations. Unlike RADIUS, TACACS+ provides more granular and flexible control over user access privileges. For example, the AAA operations are separated by TACACS+, whereas RADIUS combines the authentication and authorization services into a single function. Because TACACS+ separates these functions, administrators have more control over access to configuration commands. For example, TACACS+ can be used to provide all AAA functions, or to provide only authorization and accounting while allowing another service to perform authentication. In addition, TACACS+ encrypts the entire contents of packets, thus providing additional security. TACACS+ uses Transmission Control Protocol (TCP) port 49 for transport.

Configuring AAA

As an alternative to local authentication, you could configure a RADIUS server or a TACACS+ server as the authentication source for a Cisco device. First, you would issue the **aaa new-model** command in global configuration mode. The **aaa new-model** command enables AAA services on the local device. Other AAA commands, such as the **aaa authentication** command, cannot be issued until the **aaa new-model** command has been issued on the device.

Next, you would issue the **username** command to create a local database user as a backup so that you do not become locked out of the device you are configuring. When the **aaa new-model** command is issued, local authentication is automatically applied to all interfaces and VTY lines but not to the CON line. Creating a backup local user therefore prevents you from becoming locked out of the console.

Configuring AAA and RADIUS

After you have enabled AAA services and configured a local backup user, you can configure RADIUS on the Cisco device. After RADIUS is correctly configured, you should configure the device's AAA service to use RADIUS. You begin the process of configuring RADIUS by issuing the **radius server** *configuration-name* command in global configuration mode, where *configuration-name* is the name of the RADIUS server or configuration you want to create.

In RADIUS server configuration mode, you can assign the RADIUS server an IP address, authentication port number, and accounting port number by issuing the **address ipv4** *ip-address* [**auth-port** *port-number*] [**acct-port** *port-number*] command, where *ip-address* is the IP version 4 (IPv4) address you want the server to use. Both the **auth-port** keyword and the **acct-port** keyword are optional and can be used to configure the specific UDP ports on which the authentication and accounting services operate. If you do not specify authentication or accounting port numbers, the RADIUS server will use the default UDP port values of 1812 and 1813, respectively.

Next, you should issue the **key** *shared-key-string* command, where *shared-key-string* is a case-sensitive string that is used to verify the source and integrity of communications between the RADIUS server and a RADIUS client or a RADIUS proxy. This shared secret must match the shared secret that is configured on the RADIUS client in order for communications between clients and the server to be secure.

After the RADIUS server is configured, you should associate the server with a AAA RADIUS server group. The AAA server group will ultimately be what you configure AAA to use as an authentication service on the device. You can add more than one RADIUS server to a AAA RADIUS server group. Before you can associate a server with a group, you must either create the group or place the device into the group's configuration

mode by issuing the **aaa group** server radius *group-name* command, where *group-name* is the name of the RADIUS server group you want to create or configure.

In RADIUS server group configuration mode, you should issue the **server name** *configuration-name* command to associate the RADIUS server you previously configured with the server group. The *configuration-name* parameter should be the same value that you issued for the **radius server** command when you first configured the RADIUS server.

Finally, you should issue the **aaa authentication login** command to configure the router to use AAA authentication. You can also issue the **login authentication** command in line configuration mode to configure the CON, VTY, or AUX line to use AAA authentication.

When configuring a RADIUS server to secure access to a Cisco device, you should ensure that the device will attempt to authenticate against the RADIUS server first. If the RADIUS server is not available or cannot authenticate, the device should use its local database as a fallback option. The **aaa authentication login default group MyRadGroup** local command achieves this. The **default** keyword specifies that the device should use AAA authentication by default. The **group** keyword followed by the **MyRadGroup** parameter specifies that the device should first attempt to use the AAA group named MyRadGroup for authentication. The **local** keyword specifies that the local user database should be used for authentication if the RADIUS server is unavailable.

Configuring AAA and TACACS+

Although the two AAA services are unique, configuring a TACACS+ server on a Cisco device is similar to configuring a RADIUS server. After you have enabled AAA services and configured a local backup user, you can configure TACACS+ on the Cisco device. After TACACS+ is correctly configured, you should configure the device's AAA service to use TACACS+. You begin the process of configuring TACACS+ by issuing the **tacacs server** *configuration-name* command in global configuration mode, where *configuration-name* is the name of the TACACS+ server or configuration you want to create.

In TACACS+ server configuration mode, you can assign the TACACS+ server an IP address by issuing the **address ipv4** *ip-address* command, where *ip-address* is the IPv4 address you want the server to use. Unlike a RADIUS configuration, the TACACS+ configuration process uses a separate command for specifying a port other than the default TCP port of 49. If you do not configure the **port** command, the TACACS+ server will operate on its default TCP port. The **port** *port-number* command, where *port-number* is the TCP port number on which you want the server to operate, can be issued in TACACS+ server configuration mode.

Next, you should issue the **key** *shared-key-string* command in TACACS+ server configuration mode, where *shared-key-string* is a case-sensitive string that is used to secure communications between the TACACS+ server and a TACACS+ client. Unlike RADIUS, this key is used to encrypt all communications between a TACACS+ server and a TACACS+ client, not just the password.

After the TACACS+ server is configured, you should associate the server with a AAA TACACS+ server group. The AAA server group will ultimately be what you configure AAA to use as an authentication service on the device. You can add more than one TACACS+ server to a AAA TACACS+ server group. Before you can associate a server with a group, you must either create the group or place the device into the group's

configuration mode by issuing the **aaa group server tacacs**+ *group-name* command, where *group-name* is the name of the TACACS+ server group you want to create or configure.

In TACACS+ server group configuration mode, you should issue the **server name** *configuration-name* command to associate the TACACS+ server you previously configured with the server group. The *configuration-name* parameter should be the same value that you issued for the **tacacs server** command when you first configured the TACACS+ server.

Finally, you should issue the **aaa authentication login** command to configure the router to use AAA authentication. You can also issue the **login authentication** command in line configuration mode to configure the CON, VTY, or AUX line to use AAA authentication.

When configuring a TACACS+ server to secure access to a Cisco device, you should ensure that the device will attempt to authenticate against the TACACS+ server first. If the TACACS+ server is not available or cannot authenticate, the device should use its local database to authenticate console and VTY connections. The **aaa authentication login default group TSPGroup local** command achieves this. The **default** keyword specifies that the device should use AAA authentication by default. The **group** keyword followed by the **TSPGroup** parameter specifies that the device should first attempt to use the AAA group named TSPGroup for authentication. The **local** keyword specifies that the local user database should be used for authentication if the TACACS+ server is unavailable.

Configuring Authorization and Accounting

- Authentication must be configured first
- Authorization and accounting are not required components
- Accounting does not support local AAA
- Use the **aaa authorization** command to configure authorization
- Use the **aaa accounting** command to configure accounting

Configuring Authorization and Accounting

Authentication is a required AAA component; authorization and accounting are not. Authentication tests whether you are who you say you are. Authorization specifies what you are allowed to do and when you are allowed to do it. Accounting measures the network resources that you use and is often used for billing purposes, trend analysis, or capacity planning.

Authentication and authorization support local AAA. However, accounting cannot use the local user database and requires an external AAA server.

The **aaa authorization** and **aaa accounting** commands are configured similarly to the **aaa authentication** command. However, the **aaa authentication** command must be configured first.

Configuring IPv4 ACLs to Control Remote Access

You can control remote access to a Cisco device by limiting the types of protocols that the device accepts and by restricting access to a particular range of IP addresses. Some Cisco devices have five VTY lines by default, numbered 0–4; others have 16 VTY lines, numbered 0–15. You might assume that an extended access control list (ACL) is necessary to limit VTY access to a specific set of protocols. However, you should use the **transport input** command, not an extended ACL, to filter incoming protocols. The **transport input all** command allows access by all supported VTY lines. The **transport input none** command prevents all incoming connections to the VTY lines. The **transport input none** command prevents all incoming connections to the VTY lines. Because you need to filter access to the VTY lines by only source address, a standard ACL is sufficient.

To apply an inbound ACL to a VTY line, you should issue the **access-class** *acl-number* **in** command from line configuration mode, where *acl-number* is the name or number of the ACL. To enter line configuration mode for VTY lines, you should issue the **line vty** *start-line end-line* command, where *start-line* and *end-line* indicate the range of VTY lines that you are configuring.

In the example above, the **access-list 1 permit 192.168.1.12 0.0.0.0** command permits all traffic from the host at 192.168.1.12; you could also issue the **access-list 1 permit host 192.168.1.12** command. The **line vty 0 4** command enters VTY line configuration mode for VTY lines 0 through 4. The **access-class 1 in** command applies access list **1** to inbound traffic on the VTY lines.

Configuring IPv6 ACLs to Control Remote Access

In many ways, IP version 6 (IPv6) ACLs work similarly to IPv4 ACLs in that you can configure IPv6 ACLs to control remote access to a given device. For example, IPv6 ACLs always have an implicit deny rule at the end. However, IPv6 ACLs do not support some features that IPv4 ACLs support and the method of configuring an IPv6 ACL is different.

First you should configure the IPv6 ACL by using the **ipv6 access-list** *access-list-name* command, where *access-list-name* is an ACL identifier string. This places the device into IPv6 ACL configuration mode. Unlike IPv4 ACLs, IPv6 ACLs support only named ACLs. Therefore, you cannot configure a standard, extended, or Media Access Control (MAC) ACL for IPv6.

In IPv6 ACL configuration mode, you should issue the **deny** | **permit** protocol {source-ipv6-prefix/prefixlength | **any** | **host** source-ipv6-address} [operator [port-number]] {destination-ipv6-prefix/prefix-length | **any** | **host** destination-ipv6-address} [operator [port-number]] command to configure the ACL rules. For example, the **permit ipv6 host 2001:DB8:A::1 any eq ssh** command permits a single host that has been assigned the IPv6 address of 2001:DB8:A::1 to connect to any destination by using Secure Shell (SSH).

To apply an inbound IPv6 ACL to a VTY line, you should issue the **ipv6 access-class** *access-list-name* **in** command from line configuration mode, where *access-list-name* is the name of the ACL.

	Access
Telnet	transmits passwords in clear text
• SSH p	provides encryption
Configuring a dom	ain name
Configuring a dom	ain name
RouterA (conf	ig)#ip domain name boson.com
Configuring a doma	ain name
RouterA (conf	ig)#ip domain name boson.com
Configuring an enc	ryption key
RouterA (conf	ig)#crypto key generate rsa
Configuring a doma	ain name
RouterA (conf	ig)#ip domain name boson.com
Configuring an enc	ryption key
RouterA (conf	ig)#crypto key generate rsa
Configuring SSH ac	ccess for virtual terminals
Configuring a doma	ain name
RouterA (conf	ig) #ip domain name boson.com
Configuring an end	ryption key
RouterA (conf	ig) #crypto key generate rsa
Configuring SSH ad	ccess for virtual terminals
RouterA (conf	ig) #line vty 0 4

Requiring SSH for Remote Access

Because Telnet transmits information in clear text, it should not be used as a management protocol. Instead, all network devices should be configured to accept only encrypted connections, such as SSH. SSH requires the use of a user name and password for authentication. You can use the **transport input** command to specify the types of connections that a router or switch will accept. You can issue the **transport input ssh** command from terminal line configuration mode to configure a Cisco device to accept only SSH connections on the specified lines.

If SSH has not been previously configured, you should first configure SSH. To configure SSH, you must first have configured a host name and a domain name on the device. You can issue the **ip domain name** command to configure a domain name. After you have configured the host name and domain name, you can issue the **crypto key generate rsa** command to create an RSA encryption key for SSH.

Logging

Logging provides a way to monitor a network and its devices so that an administrator can spot and address potential problems quickly. In this section, you will learn how to configure NTP, how to configure log severity levels, and how to configure and use a logging server.

Understanding NTP

Synchronized time is an essential component of many network services, particularly those that provide event logging, authentication, or encryption. For example, Kerberos authentication can fail if there is too great a discrepancy between client and server system clocks.

Synchronized time increases the accuracy of activity analysis from network logs. Cisco devices can use NTP to synchronize the date and time on the switch to an internal network time server or to an external source. NTP requires no more than one packet per minute to keep Cisco devices synchronized to within one-millisecond precision.

To configure a switch to synchronize the date and time with a specific time server, you should issue the **ntp** server *ip-address* command in global configuration mode.

An NTP server receives its time information from a time source with a higher level of authority than itself. The authority of a particular time server is indicated by its stratum.

An NTP client listens for time messages from configured NTP servers and can be configured to form associations with multiple servers. If multiple servers are configured, the client will typically synchronize with the lowest stratum server unless there is too great of a time differential between that server and servers in the higher strata.

How NTP Stratum Works

Lower stratum values indicate more authoritative time sources. Therefore, devices with higher stratum values will trust devices with lower stratum values.

An NTP server that connects directly to an authoritative, external time source, such as an atomic clock or global positioning system (GPS) unit, is considered a stratum 1 NTP server. Stratum 1 devices are considered the most authoritative sources of clock information in the NTP hierarchy. Stratum 1 NTP servers distribute their time information to devices in the higher strata. For example, stratum 2 devices function as NTP clients to stratum 1 devices and as NTP servers to devices in the higher strata.

Configuring the System Clock and NTP

Because NTP data is formatted as Coordinated Universal Time (UTC) time instead of the local time zone, you could optionally issue the **clock timezone** command to configure the local time zone so that time values are displayed relative to the local time zone. The syntax for the **clock timezone** command is **clock timezone** *zone hours-offset* [*minutes-offset*], where *zone* is the acronym of a standard time zone, such as **CST** for Central Standard Time, *hours-offset* is the number of hours of offset from UTC time, and *minutes-offset* is an optional number of minutes the time zone is offset from UTC. You can also issue the **clock summer-time** command to indicate whether the router should participate in Daylight Saving Time (DST).

If a Cisco device cannot access a network time source or an external time source, you can set the internal clock manually by issuing the **clock set** command. The syntax for the **clock set** command is **clock set** *hh:mm:ss day month year* or **clock set** *hh:mm:ss month day year*.

You can display the system clock by issuing the **show clock** command. The **show clock detail** command will display the system clock along with time source information.

You can configure a Cisco device as an NTP server with the internal clock as its time source by issuing the **ntp master** [*stratum*] command. The **ntp master** command defaults to stratum 8, but you can specify a stratum as a parameter to change the default behavior if necessary.

Issuing the **ntp server** [*address*] command configures a Cisco device to function as an NTP static client for the specified time source and also as an NTP server for devices at higher strata. The stratum of the Cisco device will be one level higher than the stratum of the specified NTP server.

Issuing the **ntp broadcast client** command from interface configuration mode configures a Cisco device to listen on the interface for NTP broadcasts from NTP servers. The difference between a broadcast client and a static client is that a broadcast client can receive its time from any NTP server.

Configuring NTP Peers

Configuring a Cisco router as an NTP peer enables symmetric active mode on the router. A device in symmetric active mode attempts to mutually synchronize with another NTP host. When symmetric active mode is enabled, the host might synchronize the peer or it might be synchronized by the peer. This is also known as flat NTP design, where no device has priority over another. Since symmetric active mode has multiple devices that participate in mutual synchronization, it is more stable than a hierarchical client/server design. However, it requires more administrative overhead because each peer must be configured with the address of one or more other NTP peers. To configure devices as NTP peers, you should issue the **ntp peer** [address] command on each device.

Verifying NTP a	ssociations
address *~128.227.205 ~71.40.128.1 ~184.22.97.1 * sys.peer,	ref clock st when poll reach delay offset disp .3 .GPS. 1 17 64 377 0.000 0.000 0.230 57 204.9.54.119 2 18 64 377 0.000 -321 1.816 62 132.163.4.101 2 5 64 377 0.000 -314 1.134 # selected, + candidate, - outlyer, x falseticker, ~ configured fatus
RouterA#show Clock is sync nominal freq reference tim clock offset root dispersi	<pre>httpstatus htpoized, stratum 2, reference is 128.227.205.3 is 250.0000 Hz, actual freq is 250.0001 Hz, precision is 2**18 e is D549AED2.B648564C (09:18:10.712 UTC Fri May 24 2013) is -7.7623 msec, root delay is 2.95 msec on is 11.34 msec, peer dispersion is 2.34 msec</pre>

Verifying NTP

You can use the **show ntp associations** command to verify the NTP configuration on a Cisco device. The output of the **show ntp associations** command shows the IP addresses of configured NTP servers and their respective clock sources, strata, and reachability statistics. For example, in the following command output, the NTP server at IP address 128.227.205.3 is a stratum 1 server that uses a GPS time source as its time source:

address	ref clock	st	when	poll	reach	delay	offset	disp
*~128.227.205.3	.GPS.	1	17	64	377	0.000	0.000	0.230
~71.40.128.157	204.9.54.119	2	18	64	377	0.000	-321	1.816
~184.22.97.162	132.163.4.101	2	5	64	377	0.000	-314	1.134
* sys.peer, # s	selected, + cand	idate,	- out	lyer,	x fals	eticker,	~ confi	gured

The asterisk (*) next to the IP address in the command output indicates that this server is the NTP master time source to which the Cisco device is synched. A tilde (~) next to an IP address indicates that the address was manually configured.

You can use the **show ntp status** command to verify operation of NTP on a Cisco device. The example command output indicates that the system has synchronized its clock with the NTP server at IP address 128.227.205.3 and that it is functioning as a stratum 2 NTP server for devices in higher-numbered strata:

```
Clock is synchronized, stratum 2, reference is 128.227.205.3
nominal freq is 250.0000 Hz, actual freq is 250.0001 Hz, precision is 2**18
reference time is D549AED2.B648564C (09:18:10.712 UTC Fri May 24 2013)
clock offset is -7.7623 msec, root delay is 2.95 msec
root dispersion is 11.34 msec, peer dispersion is 2.34 msec
```


NTP Security

Keeping accurate time across a network infrastructure is important for monitoring and security. Unsynchronized time can cause problems with certificate-based authentication methods. Network troubleshooting can become difficult or impossible without accurate timestamps.

There are several methods that you can use to prevent NTP clients from synchronizing with unauthorized NTP servers. First, you will learn about configuring a specific source interface to increase security and reliability. Next, you will learn how to configure NTP authentication. Finally, you will learn how to use ACLs to allow NTP synchronization only with certain devices.

Configuring a Specific Source Interface

By default, when a Cisco device sends NTP packets through an interface, it uses that interface's IP address as the source IP address. You can change this behavior by configuring a specific source interface for NTP.

Creating a specific source interface for an NTP server ensures that NTP packets always come from the same IP address no matter what interface the NTP server uses to send the packets. This allows you to configure downstream NTP clients so that they will allow and authenticate only with that IP address.

To configure a specific source interface, issue the **ntp source** *interface-type interface-number* command from global configuration mode. After you issue this command, NTP packets will use the IP address of the specified interface no matter which interface the NTP packets are sent through. However, if the NTP source interface is down, NTP cannot use that interface's IP address. Therefore, Cisco recommends using a loopback interface as the NTP specific source interface to ensure that it is always in the up state.

 Uses MD5 hashe Hashes are locall Clients are config Hashes are comp 	Sources s y generated from keys ured to trust specific keys bared to verify time source	192.168.5.6 RouterA
Configuring an NTP server	with a trusted key	RouterB
Configuring an NTP server RouterA (config) #ntp RouterA (config) #ntp RouterA (config) #ntp	with a trusted key authenticate authentication-key 5 md5 MoreSecure trusted-key 5	RouterB
Configuring an NTP server a RouterA (config) #ntp RouterA (config) #ntp RouterA (config) #ntp Configuring an NTP client w	<pre>with a trusted key authenticate authentication-key 5 md5 MoreSecure trusted-key 5 vith a trusted key authentiaate</pre>	RouterB
Configuring an NTP server RouterA (config) #ntp RouterA (config) #ntp RouterA (config) #ntp Configuring an NTP client w RouterB (config) #ntp RouterB (config) #ntp	<pre>with a trusted key authenticate authentication-key 5 md5 MoreSecure trusted-key 5 rith a trusted key authenticate authenticate authentication-key 2 md5 MoreSecure</pre>	RouterB
Configuring an NTP server RouterA (config) #ntp RouterA (config) #ntp RouterA (config) #ntp Configuring an NTP client w RouterB (config) #ntp RouterB (config) #ntp RouterB (config) #ntp	<pre>with a trusted key authenticate authentication-key 5 md5 MoreSecure trusted-key 5 vith a trusted key authenticate authentication-key 2 md5 MoreSecure trusted-key 2</pre>	RouterB

Authenticating NTP Time Sources

You can configure NTP authentication so that NTP clients will synchronize only with authenticated NTP servers. NTP authentication uses only MD5 hashes for authentication.

Configuring the NTP authentication key is done the same way on both NTP servers and NTP clients. First, you must enable NTP authentication on a device by issuing the **ntp authenticate** command from global configuration mode.

Next, create the authentication key by issuing the **ntp authentication-key** command from global configuration mode. The syntax for the **ntp authentication-key** command is **ntp authentication-key** *key-number* **md5** *key*. The *key-number* is a locally significant identifier, so it does not have to match on the NTP server and NTP client. The key can be any case-sensitive string of up to 32 characters.

Finally, configure NTP with the keys that it is allowed to use by issuing the **ntp trusted-key** command from global configuration mode. The syntax for the ntp trusted-key command is **ntp trusted-key** *key-number* [- *end-key-number*], where *key-number* is the key number that you used in the **ntp authentication-key** command. If you have configured several authentication keys, you can configure NTP to use all of them. For example, to configure NTP to use keys 1 through 3, you should issue the **ntp trusted-key 1 - 3** command.

After you have issued these commands on an NTP client, you must still configure the NTP client so that it authenticates the NTP server. To do so, issue the **ntp server** *ip-address* **key** *key-number* command from global configuration mode. The *ip-address* variable is the IP address of the NTP server; if you have created a specific NTP source interface on the NTP server, you should use the IP address of that interface. The *key-number* variable is the locally significant key number that you created on the NTP client, not the key number that you configured on the NTP server.

Configuring NTP Restrictions

You can use ACLs to specify the devices to which an NTP client will synchronize. You can also configure restrictions on what kind of NTP messages are allowed.

After you have created an ACL, you should apply the ACL to NTP by issuing the **ntp access-group** command from global configuration mode. The syntax for the **ntp access-group** command is **ntp access-group** [**ipv4** | **ipv6**] {**peer** | **serve** | **serve-only** | **query-only**} {*acl-number* | *acl-name*} [**kod**].

There are four types of NTP synchronization restrictions:

- The **peer** keyword allows time requests, NTP control queries, and synchronization with the remote device.
- The serve keyword allows time requests and NTP control queries but does not allow synchronization.
- The serve-only keyword allows only time requests.
- The **query-only** keyword allows only NTP control queries.

NTP access groups support standard, extended, and named ACLs. The optional **kod** keyword can be used to send a Kiss-of-Death packet to any host that sends a packet that does not comply with the NTP policy.

NTP Version 4 and IPv6

NTP version 3 (NTPv3) supports only IPv4. NTP version 4 (NTPv4) is an extension of NTPv3 that supports both IPv4 and IPv6. NTPv4 is backward-compatible with NTPv3 and therefore uses similar command syntax.

NTPv4 increases security over NTPv3 by providing a security framework based on public-key cryptography and X.509 certificates. In addition, NTPv4 can use site-local IPv6 multicast groups to calculate and configure the NTP server hierarchy, providing the best accuracy and consuming the least bandwidth.

Configuring Log Severity Levels

Cisco log messages are divided into the following severity levels:

- 0 emergencies
- 1 alerts
- 2 critical
- 3 errors
- 4 warnings
- 5 notifications
- 6 informational
- 7 debugging

A lower severity level indicates a level of relative importance. For example, log messages with a severity level of 5 are considered have a higher severity level than log messages with a severity of 7.

Hoson

By default, all messages are logged to the available logging locations on a Cisco device. However, you can specify the minimum log severity level for a particular logging location to filter extraneous logging messages.

Issuing the **logging console** *severity-level* command would specify that messages logged to the console must have a minimum severity level of *severity-level*. When the **logging console** command is issued with a *severity-level* parameter, messages with the specified severity level and all lower-numbered severity levels will be displayed by the console. For example, in the sample configuration above, the **logging console 4** command configures SwitchA to display log messages that are at levels 0 through 4: emergencies, alerts, critical, errors, and warnings.

Issuing the **logging monitor** *severity-level* command would specify that messages logged to local VTY sessions must have a minimum severity level of *severity-level*. When the **logging monitor** command is issued with a *severity-level* parameter, messages with the specified severity level and all lower-numbered severity levels will be displayed by the console. For example, in the sample configuration above, the **logging monitor 1** command configures SwitchA to display log messages that are at level 0 and level 1.

Configuring and Using a Logging Server
 Syslog servers enable the capture of logs for later review
 You can limit the severity level of messages that are logged to the server
 Configuring logging to a Syslog server
 RouterA (config) #logging host 192.168.5.10
 CuterA (config) #logging trap 5

Configuring and Using a Logging Server

By default, message logging is enabled and sends messages to the console on Cisco routers and switches. This feature can be directly disabled by issuing the **no logging console** command. You can configure an additional destination for message logging by issuing the **logging host** *host-ip-address* command, where *host-ip-address* is the host name or IP address of a Syslog server. A Syslog server captures Syslog-formatted messages and stores them. In the sample configuration above, the **logging host 192.168.5.10** command configures SwitchA to send logging messages to the Syslog server that has been assigned the IP address of 192.168.5.10.

You can limit the severity level of messages sent to a Syslog server by issuing the **logging trap** *severity-level* command. In the sample configuration above, the **logging trap 5** command configures the switch to send to the server Syslog messages that are at levels 0 through 5: emergencies, alerts, critical, errors, warnings, and notifications.

Finally, you can verify the logging configuration of a Cisco router or switch by issuing the **show logging** command from privileged EXEC mode. The output of the **show logging** command will enable you to determine where logging occurs, such as on the console or to a Syslog server, the number of messages that have been logged, and the logging level that is configured for each logging device.

The following sample output reflects the remote logging settings in the previous example:

0 message lines rate-limited, 0 message lines dropped-by-MD, xml disabled, sequence number disabled filtering disabled Logging Source-Interface: VRF Name:

Monitoring

The more network devices you administer, the more difficult it is to monitor them. Fortunately, there are many tools that you can use to properly monitor and assess the devices on your network. In this section, you will learn about **debug** commands, SNMP, NetFlow, and IP SLA.

Boson

Understanding debug Commands

IOS **debug** commands enable an administrator to view traffic and information in real time, as it happens on the device. However, **debug** commands can significantly increase the use of device resources and can degrade performance. Therefore, you should use **debug** commands only to troubleshoot a problem, not to monitor normal network traffic. To see the effects of **debug** commands on a device, you can issue the **show processes** command, which displays a list of processes that are running on the device along with CPU utilization statistics.

You should typically issue **debug** commands from privileged EXEC mode. After you have gathered all the information you need from the output of a **debug** command, you can disable debugging by issuing the **no** form of the specific **debug** command or by issuing the **no debug all** command in privileged EXEC mode.

You can take steps to minimize the effects of **debug** commands on device performance. For example, you can issue the **no logging console** command to disable the echoing of debugging output to the console. The console port processes all debug output, which increases the CPU load on the device. After you disable logging to the console, you can issue the **terminal monitor** command to display debugging output to the Telnet or SSH session you use to connect to the device.

You can also limit some debug output by using an ACL so that only packets that match the specified criteria are logged. For example, the **debug ip packet 111** command displays only packets that match ACL 111.

Boson

Understanding SNMP

SNMP is used to collect statistics about network devices. An SNMP agent reads and displays information from a hierarchical database of objects known as a management information base (MIB).

Three versions of SNMP are available to Cisco devices: SNMP version 1 (SNMPv1), SNMPv2c, and SNMPv3. This section covers the differences between these versions.

Using SNMP Data

SNMP agents can be regularly polled over UDP by an SNMP manager, which in turn might be a component of a centralized network management system (NMS). The SNMP manager is thus responsible for collecting data from the local MIBs of SNMP agents and storing it over time. The data that the SNMP manager obtains from devices can be used to trigger NMS performance or security notifications.

There are several operations available for the SNMP agent to retrieve data from its MIB, depending on the version of SNMP that is in use. All versions of SNMP support the GET operation to retrieve data from the MIB. In addition, all versions of SNMP support the GET-NEXT operation, which the SNMP agent uses to obtain the next object from the MIB. However, only SNMPv2c and SNMPv3 support the GET-BULK operation, which is used by a management application to retrieve information in bulk from an MIB.

There are also several operations available for an SNMP manager to communicate with an SNMP agent. For example, an SNMP manager uses the SET operation to send information to an MIB from the SNMP manager. Both the TRAP operation and the INFORM operation are used by an SNMP agent to send information to an SNMP manager. A TRAP is triggered information that is sent from an SNMP agent to the SNMP manager. An INFORM is similar to a TRAP but contains an acknowledgment.

You must configure at least one **snmp-server host** command to complete an SNMP server traps configuration. Until a destination SNMP server is specified by issuing the **snmp-server host** *host-name* command, no notifications will be sent. In addition, you must configure at least one **snmp-server enable traps** command in order to configure a Cisco device to send SNMP traps to an SNMP server. When issued without additional parameters, the **snmp-server enable traps** command configures a Cisco device to send all SNMP notifications.

The syntax of the **snmp-server enable traps** command is **snmp-server enable traps** [*notification-type*], where *notification-type* is the type of trap or inform to enable. You can issue multiple **snmp-server enable traps** commands on a device. For example, to ensure that only critical digital signal processor (DSP) traps are sent to the SNMP server, you could issue the following commands:

snmp-server enable traps alarms 1 snmp-server enable traps dsp

The **snmp-server enable traps alarms 1** command ensures that only critical traps are sent. In addition, the **snmp-server enable traps dsp** command ensures that only DSP traps are sent. There are four alarm severity levels that can be specified:

- Critical
- Major
- Minor
- Informational

If no severity level is specified when traps are enabled, the default level is 4, which means that informational, minor, major, and critical traps are all sent.

SNMP Views

SNMP information is stored in the MIB. The objects in the MIB are organized by using object IDs (OIDs), which are unique identifiers that are assigned to each object. To limit the information that can be accessed by a user, you can create an SNMP view. An SNMP view can be configured to include or exclude certain OID subtrees. However, SNMP views are supported only on SNMPv3.

SNMP Versions

SNMPv1 and SNMPv2c use community strings to provide authentication. In fact, the c in SNMPv2c stands for "community strings" to differentiate it from other attempts to add security in SNMPv2. Neither SNMPv1 nor SNMPv2c uses encryption; all data and community strings are sent in clear text. A malicious user can sniff an SNMP community string and use it to access and modify network devices. SNMPv3 is an enhancement to the SNMP protocol that uses encryption to provide confidentiality, integrity, and authentication.

SNMPv3, on the other hand, is capable of using encryption for strong authentication and confidential communication. SNMPv3 uses either MD5 or SHA to authenticate. In addition, SNMPv3 is capable of encrypting entire packets of information and verifying the integrity of information sent across the network.

SNMP Feature Comparison						
Feature	v1	v2c	v3			
GET	0	0	0			
GET-NEXT	0	0	0			
SET	0	0	0			
GET RESPONSE	0	0	0			
TRAP	0	0	0			
INFORM	0	0	0			
GET-BULK REQUEST	0	0	0			
Community Strings	0	0	0			
Access Control Authentication Authorization Encryption Integrity	0	0	0			

SNMP Feature Comparison

All three versions of SNMP support GET, GET-NEXT, SET, GET RESPONSE, and TRAP messages. SNMPv2c and SNMPv3 also include support for INFORM messages.

SNMPv2c and SNMPv3 both support a bulk retrieval operation known as GET-BULK. SNMPv1 is incapable of retrieving information from the MIB in bulk form.

All three versions of SNMP support community strings. SNMPv2c improved upon error handling and several other features of SNMPv1. However, only SNMPv3 provides support for access control, authentication, authorization, encryption, and message integrity.

Configuring SNMPv1 and SNMPv2c

To configure SNMP access to a Cisco device, you should issue the **snmp-server community** *communitystring* [**ro** | **rw**] command in global configuration mode, where *community-string* is the string of alphanumeric characters that you want to assign as the community string. The community string can be no more than 32 characters long and cannot contain the at (**@**) symbol. The **ro** keyword enables read-only access to the MIB. The **rw** keyword enables read-write access to the MIB.

The commands above display two ways to configure SNMP on a Cisco router. The first configures SNMP with a community string of example and read-only access. The second configures SNMP with a community string of example and read-write access. By default, all three versions of SNMP are available when SNMP is enabled on a Cisco SNMP management device. The SNMP agent can then be configured to connect to the management station by using a specific version of SNMP.

You can specify the IP address or host name of a recipient of an SNMP notification operation by issuing the **snmp-server host** {*ip-address* | *host-name*} command. By default, there is no recipient specified and this command is disabled. You can specify the type of request that is sent to the recipient by appending either the **informs** keyword or the **traps** keyword to the **snmp-server host** command. For example, the **snmp-server host** 192.168.51.50 informs command sends informs requests to the host at 192.168.51.50. You can also issue the command with the **version** keyword to specify the version of SNMP to use.

Configuring RouterA to use SNMPv3 with neither authentication nor encryption (noAuthNoPriv) RouterA(config)#snmp-server host 192.168.51.50 traps version 3 noauth

communityname

username

username

Configuring SNMPv3

If you issue the snmp-server host command with version 3, you can also specify the priv, auth, or noauth keyword to configure the SNMPv3 access mode.

- Issuing the **priv** keyword configures SNMPv3 to use the authPriv access mode, which provides both authentication and encryption.
- Issuing the **auth** keyword configures SNMPv3 to use the authNoPriv access mode, which provides authentication but not encryption.
- Issuing the noauth keyword configures SNMPv3 to use the noAuthNoPriv access mode, which provides neither authentication nor encryption. This is equivalent to the access mode used by SNMPv1 and SNMPv2c.

The authPriv access mode authenticates by matching an MD5 or SHA hash of the user name. The authentication process is also encrypted by using either Data Encryption Standard (DES), Triple DES (3DES), or Advanced Encryption Standard (AES). The authPriv security level is the only SNMPv3 security level that can encrypt the authentication process, and it does so by using Cipher Block Chaining Data Encryption Standard (CBC-DES).

The authNoPriv access mode authenticates by matching Hash-based Message Authentication Code-SHA (HMAC-SHA) or HMAC-MD5 authentication strings. However, the authNoPriv security level does not provide encryption.

The noAuthNoPriv access mode authenticates by matching a user name sent as clear text. SNMPv1 and SNMPv2c match community strings instead of user names.

In addition to the security level, you can configure the **snmp-server host** command with a specific community string to use, UDP port on which to operate, and notification type to send.

Configuring a view to be	read from and written to for the SNMPv3 group
RouterA(config)#s	nmp-server view MyView sysUpTime included
Configuring an SNMPv3 g	group with privileges and an ACL
RouterA(config)#s access 10	nmp-server group MyGroup v3 priv read MyView
Configuring an SNMPv3 ເ	user, assigning the group, and specifying authentication and encryption
RouterA(config)#s ASecureString pri	nmp-server user Jdoe MyGroup v3 auth sha v aes 256 AMoreSecureString

To configure a view, you should issue the **snmp-server view** command. The syntax for the **snmp-server view** command is **snmp-server view** *view-name oid-tree* {**included** | **excluded**}. For example, the **snmp-server view MyView sysUpTime included** command creates or modifies an SNMP view named MyView and includes the sysUpTime OID subtree.

After you configure a view, you can configure an SNMPv3 group and authorize the view for the group by issuing the **snmp-server group** command. The syntax for the **snmp-server group** command is **snmp-server group** *group-name* {**v1** | **v2c** | **v3** {**auth** | **noauth** | **priv**}} [**context** *context-name*] [**read** *read-view*] [**write** *write-view*] [**notify** *notify-view*] **access** [**ipv6** *named-access-list*] [*acl-number* | *acl-name*]]. For example, the **snmp-server group MyGroup v3 priv read MyView access 10** command creates an SNMP group named MyGroup, configures it for SNMPv3, enables authentication and encryption, provides read access to MyView, and restricts access to packets that match standard ACL 10.

You can then configure an SNMPv3 user and assign the user to a group by issuing the snmp-server user command. The syntax for the snmp-server user command is snmp-server user *user-name group-name* [remote *host* [udp-port *port*] [vrf *vrf-name*] {v1 | v2c | v3 [encrypted] [auth {md5 | sha} auth-password]} [access [ipv6 named-access-list] [priv {des | 3des | aes {128 | 192 | 256}} *priv-password*] {*acl-number* | *acl-name*}]. For example, the snmp-server user Jdoe MyGroup v3 auth sha ASecureString priv aes 256 AMoreSecureString command creates a user named Jdoe, assigns Jdoe to MyGroup, configures it for SNMPv3, enables SHA authentication with the password ASecureString, and enables 256-bit AES encryption with the password AMoreSecureString.

Issuing the previous commands would provide Jdoe with read access to the sysUpTime subtree. Assigning subtrees to views, assigning views to groups, and assigning groups to users seems like a lot of work, but it provides a great deal of flexibility while still maintaining scalability. After all, if you have included multiple OID subtrees in a view and assigned multiple views to a group, you would not want to have to issue dozens of commands each time you create a new user. Instead, the next time you need to assign the same view or views to a new user, you can simply assign the new user to MyGroup.

Verifying the SNMP	configuration	
RouterA#show	snmp	
Verifying the SNMP	v3 view configuration	
RouterA#show	snmp view	
Verifying the SNMF RouterA#show	v3 group configuration	
Verifying the SNMP	v3 user configuration	
RouterA#show	snmp user	

Verifying SNMPv3

Most SNMP configuration commands have an equivalent **show** command that can be used to verify the configuration. The **show snmp** command without additional keywords displays SNMP counter information, such as the number of requests and responses, in addition to the number of errors.

The **show snmp view** command displays the view names along with the corresponding included and excluded OID subtrees. It also displays whether the view is stored in volatile, nonvolatile, or permanent storage, as well as whether the view is active or nonactive.

The **show snmp group** command displays each SNMP group name, the corresponding SNMP version, and the associated read, write, and notify views.

The **show snmp user** command displays the associated group name, the authentication protocol, the encryption protocol, and active ACL for each SNMP user. It also displays whether the user information is stored in volatile, nonvolatile, or permanent storage.

Understanding NetFlow

NetFlow is a Cisco feature that you can use to capture statistics about network traffic flows that pass through many Cisco routers and Layer 3–capable switches. Although Cisco considers a series of packets a *flow* if they share, at a minimum, the same source and destination IP addresses, a flow is defined as a series of packets that share the following characteristics:

- Source IP address
- Destination IP address
- Protocol number
- Source protocol port
- Destination protocol port
- Type of Service (ToS) bits
- Associated interface

By default, the data gathered by NetFlow is stored locally in dedicated NetFlow tables on each configured device. You can access the information stored in the NetFlow tables of a device by issuing the appropriate NetFlow-related **show** commands from privileged EXEC mode. Alternatively, you can configure the device to export NetFlow statistics to a central location, which is referred to as a NetFlow collector.

Each record in the NetFlow table contains a considerable amount of information about any given flow. In addition to the data that defines the flow, each record can also include the following information:

- Next-hop router address
- Input and output interface numbers

- Number of packets transmitted
- Number of bytes transmitted
- Time stamp of the first and last packets
- Source and destination autonomous system numbers (ASNs)
- Source and destination subnet masks
- TCP flags

Because NetFlow data is collected over time, it is particularly suited for accounting, billing, and security applications.

Configuring No	etFlow to monitor ingress traffic on an interface
RouterA(co RouterA(co	onfig)#interface fastethernet 0/0 onfig-if)#ip flow ingress
Configuring No	etFlow to monitor egress traffic on an interface
RouterA(co RouterA(co	onfig)#interface fastethernet 0/1 onfig-if)#ip flow egress
Configuring th	e NetFlow export version
RouterA(co	onfig)#ip flow-export version 9
Configuring th	e NetFlow collector address, port, and transport protocol
RouterA(co	onfig)#ip flow-export destination 4.3.2.1 8888 sc

Configuring NetFlow

You can configure NetFlow to monitor either ingress or egress traffic on an interface. For example, you can issue the **ip flow ingress** command from interface configuration mode to enable NetFlow on a particular interface. The syntax of the **ip flow** command is **ip flow** {**egress** | **ingress**}, where the **ingress** keyword enables NetFlow for inbound traffic on the interface and the **egress** keyword enables NetFlow for outbound traffic on the interface.

Although NetFlow statistics are stored locally in NetFlow tables, you can export NetFlow data to an external device by using the **ip flow-export** command. You should first issue the **ip flow-export version** command to specify the record format for the exported NetFlow data. By default, NetFlow data is exported using version 1, but Cisco recommends that you change the export version to the highest version supported by your NetFlow collector. Most NetFlow devices support export versions 1, 5, and 9. For example, you can issue the **ip flow-export version 9** command to change the NetFlow export format to version 9.

Once you have specified a NetFlow export version, you should issue the **ip flow-export destination** command to specify the IP address and port number of the NetFlow collector. NetFlow records are exported as UDP datagrams by default, but some platforms support Stream Control Transmission Protocol (SCTP) as an alternate transport protocol. You can use the **sctp** keyword with the **ip flow-export destination** command to specify that SCTP should be used instead of UDP to transmit NetFlow data. For example, you could issue the **ip flow-export destination 4.3.2.1 8888 sctp** command to specify a NetFlow collector with an IP address of 4.3.2.1 that is listening for NetFlow data on SCTP port 8888.

Viewing NetFlow Data

You can issue the **show ip flow interface** command to verify the basic NetFlow configuration for all interfaces on the device. In the sample output below, you can see that NetFlow is configured to monitor inbound flows on the FastEthernet 0/0 interface and outbound flows on the FastEthernet 0/1 interface:

```
RouterA#show ip flow interface
FastEthernet0/0
ip flow ingress
FastEthernet0/1
ip flow egress
```

If the device has been configured to export NetFlow data, you can issue the **show ip flow export** command to verify the NetFlow export format version and the IP address and port numbers of any configured NetFlow collectors. In the sample output below, you can see that NetFlow data is exported using the version 9 format and that two collectors have been configured. One collector has an IP address 1.2.3.4 and is listening on UDP port 9999, whereas the other collector has an IP address of 4.3.2.1 and is listening on SCTP port 8888:

```
RouterA#show ip flow export

Flow export v9 is enabled for main cache

Export source and destination details :

VRF ID : Default

Destination(1) 1.2.3.4 (9999)

Destination(2) 4.3.2.1 (8888) via SCTP

Version 9 flow records
```


418 flows exported in 4534 udp datagrams
325 flows exported in 1864 sctp messages
0 flows failed due to lack of export packet
0 export packets were sent up to process level
0 export packets were dropped due to no fib
0 export packets were dropped due to adjacency issues
0 export packets were dropped due to fragmentation failures
0 export packets were dropped due to encapsulation fixup failures

You can issue the **show ip cache flow** command to view basic NetFlow data. The command output displays a variety of statistics including the number of flows for each protocol, the source and destination IP addresses for each flow, and the number of packets transmitted in each flow. In the sample output below, 39 packets have been transmitted between the 10.10.10.2 and 192.168.1.2 IP addresses:

```
RouterA#show ip cache flow
IP packet size distribution (1103746 total packets):
             96 128 160 192 224 256 288 320 352 384 416 448 480
  1-32
       64
  512 544 576 1024 1536 2048 2560 3072 3584 4096 4608
  IP Flow Switching Cache, 278544 bytes
 35 active, 4061 inactive, 980 added
 2921778 ager polls, 0 flow alloc failures
 Active flows timeout in 30 minutes
 Inactive flows timeout in 15 seconds
IP Sub Flow Cache, 21640 bytes
 0 active, 1024 inactive, 0 added, 0 added to flow
 0 alloc failures, 0 force free
 1 chunk, 1 chunk added
 last clearing of statistics never
Protocol Total
              Flows Packets Bytes Packets Active(Sec) Idle(Sec)
                                              /Flow
---- Flows
                /Sec
                        /Flow /Pkt
                                      /Sec
                                                       /Flow
                0.0
                        1321
                               40
                                      1.5
                                            1200.1
                                                       0.8
TCP-WWW
        83
                                            1200.1
        127
               0.0
                        1203
                               40
                                     0.6
                                                       0.7
TCP-NTP
                                      4.7
TCP-other 337
                0.0
                        1220
                              40
                                            1201.4
                                                       0.8
                        1213 28
                                      0.5
                                            1199.4
UDP-TFTP
        17
                0.0
                                                       1.0
                                      2.1
UDP-other 138
               0.0
                       1117 28
                                            1199.5
                                                       0.9
        125
                0.0
                        1133 418
                                     2.1
                                            1199.4
                                                       0.8
ICMP
Total:
        915
                0.0
                        1166
                              91
                                     22.4
                                            1799.6
                                                       0.8
SrcIf SrcIPaddress
                  DstIf
                              DstIPaddress
                                            Pr SrcP DstP Pkts
Fa0/0 10.10.10.2
                              192.168.1.2
                                           01 0000 0C01
                    Fa0/1
                                                           39
Fa0/0 10.10.20.3
                    Fa1/1
                             192.168.2.5 11 0043 0043
                                                           18
Fa0/0 10.10.30.5
                    Fa1/0
                              192.168.4.7
                                            11 0045 0045
                                                           42
```

For slightly more detailed NetFlow data, you can issue the **show ip cache verbose flow** command. The command output includes all of the same flow summary and protocol information; however, the detailed flow information is changed to include additional information such as the next-hop IP address, ToS flags, and ASNs:

RouterA#show ip cache	e verbose flow			
IP packet size distr	ibution (1103	746 total packe	ets):	
1-32 64 96 13	28 160 192	224 256 288	320 352 384	416 448 480
<output omitted=""></output>				
SrcIf SrcIPaddress	DstIf	DstIPaddres	s Pr TOS Flo	gs Pkts
Port Msk AS	Port Msk AS	NextHop	B/Pk	Active
Fa0/0 10.10.10.2	Fa0/1	192.168.1.2	01 00 10	799
0000 /0 0	0C01 /0 0	0.0.0.0	28	1258.1
Fa0/0 10.10.20.3	Fa1/1	192.168.2.5	11 00 10	799
0043 /0 0	0043 /0 0	0.0.0.0	28	1258.0
Fa0/0 10.10.30.5	Fa1/0	192.168.4.7	11 00 10	799
0045 /0 0	0045 /0 0	0.0.0.0	28	1258.0

You can issue the **show flow-sampler** command to display statistical information to determine how many packets have been matched for a random sampling of packets. The following command output displays data from a NetFlow sampler named BSN, which has an ID of 1 and has matched five packets out of 100 in random sampling mode:

Sampler : BSN, id : 1, packets matched : 5, mode : random sampling mode
sampling interval is : 100

Understanding IP SLAs

IP SLA operations are a suite of tools that enable an administrator to analyze and troubleshoot IP networks. IP SLAs are more robust and can provide more detailed information about a problem than a standard ping or trace can provide. For example, the IP SLA Internet Control Message Protocol (ICMP) Echo test can be used to send Echo requests to remote devices and receive Echo replies to test availability, just as the **ping** command does. However, IP SLAs also support a variety of other tests that can measure network latency and response time, among other things. For example, the IP SLA ICMP round-trip latency operation can be used to determine whether end-to-end delays or slowness are occurring on Voice over IP (VoIP) calls.

IP SLAs can be used to perform a number of different tests, can be configured to run at scheduled intervals, and can be configured to monitor connection-oriented flows. In addition, you can gather more data and perform more complex operations by enabling an IP SLA responder.

Configuring IP SLA Echo

In order to configure the IP SLA Echo operation, you must first create an IP SLA probe by issuing the **ip sla** *operation-number* command, where *operation-number* is an integer value that you want to use to identify the probe. Issuing this command also places the device into IP SLA configuration mode.

In IP SLA configuration mode, you can configure a variety of operations for the probe to perform. To specifically configure the IP SLA Echo operation, you should issue the **icmp-echo** *destination-ip-address* command, where *destination-ip-address* is the IP address of the remote device for which you want to test availability. You can also issue the **frequency** *seconds* command to define a rate in seconds at which the Echo operation will repeat.

After you have configured the probe, you must schedule it to run by issuing the **ip sla schedule** operationnumber [**life** {**forever** | seconds}] [start-time {hh:mm[:ss] [monthday | daymonth] | **pending** | **now** | **after** hh:mm:ss}] [**ageout** seconds] [**recurring**] command, where operation-number is the number that you assigned the probe when you created it, from global configuration mode. If you issue the **ip sla schedule** operation-number command without parameters, the probe is enabled but placed into the pending state. You can adjust how the schedule behaves by issuing the optional keywords as follows:

- **life** If omitted, the default value is 3,600 seconds, or one hour. You can specify an alternate number of seconds or issue the keyword **forever** so that the SLA continues to run without end once it is started.
- **start-time** If omitted, the start time defaults to **pending**. However, you can specify that the SLA process start at a given time, such as 11:30:30, or after a given time by issuing the **after** keyword prior to the time you specify. You can also specify a specific month and day, such as **January 1** or **1**

January, on which to start the SLA. Finally, you can specify that the SLA start immediately by issuing the **now** keyword.

- **ageout** The number of seconds that should elapse before removing an operation from memory when it is not collecting information. By default, the ageout value is 0, which configures the schedule to never remove the operation from memory.
- **recurring** When a start time and life have been specified, issuing this keyword ensures that the SLA starts and runs for the same duration every day.

To use the probe to test the reachability of a route, you must create a tracking object and map it to the probe by issuing the **track** *object-number* **ip sla** *operation-number* **reachability** command from global configuration mode. For example, the **track 4 ip sla 1 reachability** command creates tracking object 4 and links it to IP SLA probe 1.

You can then configure a tracked static route that will be used if the tracked object defined in the probe is reachable. To do so, add the **track** *object-number* keywords to the end of the static route. For example, the **ip route 0.0.0 0.0.0 10.10.10.1 track 4** command configures a router to use a static default route to 10.10.10.1 if tracking object 4 is reachable.

Verifying IP SLA	probes	
RouterA#sho	w ip sla configuration	
RouterA#sho	w ip sla statistics	
RouterA#sho	w track	

Verifying IP SLA

After IP SLA has been configured, you can display all the values with which a probe has been configured by issuing the **show ip sla configuration** command from privileged EXEC mode. You can examine the operational status and statistics associated with an IP SLA probe by issuing the **show ip sla statistics** [aggregated] command from privileged EXEC mode. The optional aggregated keyword causes the command to display aggregated statistical errors and distribution information.

You can verify configured tracking objects by issuing the **show track** command. The output of the **show track** command displays the mapping between the tracking object and the probe as well as the status of the tracking object.

IP SLA Responders

To gather more robust data, the destination router for an IP SLA operation should have an IP SLA responder enabled. The IP SLA responder is an embedded component that provides accurate measurements without requiring dedicated probes. Although an IP SLA responder is not required for normal IP SLA operation, it can account for packet processing time on a destination router by adding timestamps to a packet when it enters or leaves a network interface. The IP SLA operations source router then considers the additional packet timestamps when reporting data about round-trip times on a network.

To enable an IP SLA responder for general operations, you should issue the **ip sla responder** command in global configuration mode on the destination router. To enable an IP SLA responder for TCP Connect operations, you should issue the **ip sla responder tcp-connect ipaddress** *ip-address* **port** *port-number* command. To enable an IP SLA responder for UDP Echo or Jitter operations, you should issue the **ip sla responder udp-echo ipaddress** *ip-address* **port** *port-number* **command**.

Configuring IP SLA Jitter with Responder

Before you configure an IP SLA Jitter operation on a source device, you must enable the IP SLA Responder on the target device. To do so, you should issue the **ip sla responder** command or the **ip sla responder udp-echo ipaddress** *ip-address* **port** *port-number* command.

Configuring IP SLA Jitter is similar to configuring IP SLA Echo. You must first create an IP SLA by issuing the **ip sla** *operation-number* command. To specifically configure the IP SLA Jitter operation, you should issue the **udp-jitter** *destination-ip-address destination-port* command. You can also issue the **frequency** *seconds* command to define a rate in seconds at which the Jitter operation will repeat.

After you have configured the SLA, you must schedule the SLA to run by issuing the **ip sla schedule** *operation-number* [**life** {**forever** | *seconds*}] [*start-time* {*hh:mm*[:ss] [*monthday* | *daymonth*] | **pending** | **now** | **after** *hh:mm*:ss}] [**ageout** *seconds*] [**recurring**] command. If you issue the **ip sla schedule** *operation-number* command without parameters, the SLA is enabled but placed into the pending state.

0000 10	Do hash aumentication
Hashes	are calculated from key strings
onfiguring a ke	y chain and key string
RouterA(con	fig)#key chain SLACHAIN
RouterA(con	fig-keychain)#key 1
Coulera (com	
onfiguring IP SI	A to use the key chain for authentication
	Sin) Minus Inchesing OF POWP TH

IP SLA Authentication

You can also configure message authentication for IP SLA. With IP SLA message authentication, devices must authenticate with one another before they will accept IP SLA control messages. IP SLA uses MD5 for authentication.

First, you must create a key chain by issuing the **key chain** *keychain-name* command. Issuing this also places the device into keychain configuration mode.

In keychain configuration mode, issue the **key** *key-number* command, which identifies a key on the key chain. Issuing this command places the device into keychain key configuration mode.

In keychain key configuration mode, issue the **key-string** *password* command. The key string is case-sensitive and must match on both devices.

The command sequence in the example above creates a key chain named SLACHAIN, establishes key 1, and creates the authentication string ASecureString.

After you have created the key chain and configure the key string, you must configure IP SLA to use that key chain for authentication. To do so, you should issue the **ip sla key-chain** *keychain-name* command, where *keychain-name* is the name you used in the original **key chain** command. For example, you would issue the **ip sla key-chain SLACHAIN** command to use the key chain in this scenario.

Disabling or Replacing Unused Services

Any service that is enabled and is not required on a router is a security risk. In addition, many network services that are available on a Cisco router can communicate potentially sensitive data in clear text across the network. The simplest method of securing such network services on a Cisco switch is to disable and not use them.

You should consider disabling Cisco Discovery Protocol (CDP) on any device where it is not specifically required. Cisco recommends disabling CDP globally on a device if CDP is not required by your organization. CDP transmits unencrypted information about Cisco devices over the network. If CDP is required, then it should be enabled only on the interfaces that require it. To disable CDP globally on a switch, issue the **no cdp run** command in global configuration mode. To disable CDP on a specific interface, issue the **no cdp enable** command in interface configuration mode.

Cisco recommends disabling NTP on interfaces on which time information should never be received. A malicious user could connect a low stratum NTP device to the network and feed incorrect time information to networked devices. To disable the processing of NTP packets on an interface, issue the **ntp disable** command from interface configuration mode.

Cisco recommends disabling Bootstrap Protocol (BOOTP) on any devices on which it is not used. A malicious user can use BOOTP information to steal an IOS image. In addition, BOOTP is seldom used. To disable BOOTP, issue the **no ip bootp server** command from global configuration mode.

Although Dynamic Host Configuration Protocol (DHCP) is used much more often than BOOTP, DHCP is basically an extension of BOOTP and can be exploited similarly. To disable DHCP, issue the **no ip dhcp-server** command from global configuration mode.

Replacing HTTP with HTTPS RouterA(config) #no ip http-server RouterA(config) #ip http secure-server Disabling common vulnerable network services RouterA(config) #no service tcp-small-servers RouterA(config) #no service udp-small-servers	eplacing HTTP with HTTPS RouterA(config) #no ip http-server RouterA(config) #ip http secure-server sabling common vulnerable network services RouterA(config) #no service tcp-small-servers RouterA(config) #no service udp-small-servers RouterA(config) #no service udp-small-servers	Disab Un	oling or Replacing oused Services
RouterA(config)#no ip http-server RouterA(config)#ip http secure-server Disabling common vulnerable network services RouterA(config)#no service tcp-small-servers RouterA(config)#no service udp-small-servers	RouterA(config) #no ip http-server RouterA(config) #ip http secure-server ResulterA(config) #no service services RouterA(config) #no service tcp-small-servers RouterA(config) #no service udp-small-servers	placing HTTP with HTTPS	
Disabling common vulnerable network services RouterA(config)#no service tcp-small-servers RouterA(config)#no service udp-small-servers	sabling common vulnerable network services RouterA(config)#no service tcp-small-servers RouterA(config)#no service udp-small-servers	outerA(config)#no outerA(config)#ip	ip http-server http secure-server
RouterA(config)#no service tcp-small-servers RouterA(config)#no service udp-small-servers	RouterA(config)#no service tcp-small-servers RouterA(config)#no service udp-small-servers	abling common vulnerab	le network services
		outerA(config)#no outerA(config)#no	service tcp-small-servers service udp-small-servers

The default Hypertext Transfer Protocol (HTTP) server configuration on a Cisco switch sends authorization information in clear text across a network, making it vulnerable to sniffers. If you require HTTP access to the switch, you should implement a Secure HTTP (HTTPS) server. An HTTPS server encrypts standard HTTP traffic over Secure Sockets Layer (SSL). To replace an HTTP server with an HTTPS server on a Cisco switch, issue the **no ip http-server** command followed by the **ip http secure-server** command in global configuration mode. The **no ip http-server** command disables the HTTP server. The **ip http secure-server** command enables the HTTPS server.

Unnecessary TCP or UDP services that are enabled on a switch can create vulnerable access ports for attackers. You can issue the **no service** command to disable TCP or UDP services that are not required by your organization. The **no service tcp-small-servers** command and the **no service udp-small-servers** command disable the following TCP and UDP services: Echo, Chargen, Discard, and Daytime. Versions of IOS later than 11.2 have TCP small servers and UDP small servers disabled by default.

Module Notes

Review Question 1

Which of the following statements is true regarding RADIUS?

- A. It is a Cisco-proprietary protocol.
- B. It separates each AAA operation.
- C. It encrypts the entire contents of the packet.
- D. It uses UDP ports 1812 and 1813.

Remote Authentication Dial-In User Service (RADIUS) uses User Datagram Protocol (UDP) ports 1812 and 1813. UDP port 1812 is used for authentication and authorization. UDP port 1813 is used for accounting.

RADIUS is not a Cisco-proprietary protocol. RADIUS is an Internet Engineering Task Force (IETF) standard protocol that is defined in Request for Comments (RFC) 2865 and 2866. By contrast, Terminal Access Controller Access-Control System Plus (TACACS+) is a Cisco-proprietary protocol.

RADIUS does not separate each Authentication, Authorization, and Accounting (AAA) operation. The authentication and authorization functions of RADIUS are combined into a single function, which limits the flexibility that administrators have when configuring these functions. By contrast, TACACS+ separates the authentication, authorization, and accounting functions of AAA, which enables more granular control of access to resources.

RADIUS does not encrypt the entire contents of the packet; it encrypts only the password of the packet. By contrast, TACACS+ encrypts the entire body of the packet.

Review Question 2

Which of the following message levels are displayed by the **logging console 3** command?

- A. alerts
- B. critical
- C. debugging
- D. emergencies
- E. errors
- F. informational
- G. notifications
- H. warnings

The alerts, critical, emergencies, and errors message levels are displayed by the **logging console 3** command. The **logging console 3** command specifies that messages at severity level 3 and lower will be logged to the console. Cisco log messages are divided into the following severity levels:

- 0 emergencies
- 1 alerts
- 2 critical
- 3 errors
- 4 warnings
- 5 notifications
- 6 informational
- 7 debugging

Review Question 3

RouterA(config)#snmp-server host 192.168.51.50 traps version 3
priv boson

Which of the following statements is true regarding the command above?

- A. It provides both authentication and encryption.
- B. It provides authentication but does not provide encryption.
- C. It provides encryption but does not provide authentication.
- D. It provides neither authentication nor encryption.

The **snmp-server host 192.168.51.50 traps version 3 priv boson** command provides both authentication and encryption. When issuing the **snmp-server host** command with **version 3**, you can specify the **priv**, **auth**, or **noauth** keyword to configure the Simple Network Management Protocol version 3 (SNMPv3) access mode.

- Issuing the **priv** keyword configures SNMPv3 to use the authPriv access mode, which provides both authentication and encryption.
- Issuing the **auth** keyword configures SNMPv3 to use the authNoPriv access mode, which provides authentication but not encryption.
- Issuing the **noauth** keyword configures SNMPv3 to use the noAuthNoPriv access mode, which provides neither authentication nor encryption.

The labs referenced in this book have been printed in the Boson Lab Guide, which is available for purchase. To learn more about the Boson NetSim or to purchase and download the software, please visit www.boson.com/netsim-cisco-network-simulator.

Index

Symbols

3DES (Triple Data Encryption Standard), 50 4to6 tunneling, 136 6to4 tunneling, 136 802.1Q, 443 802.1X, 14

Α

AAA (Authentication, Authorization, and Accounting), 13-20, 70 ABR (area border router), 227, 230, 231, 243-247, 249, 255, 256, 261, 264, 292, 302, 401, 403, 404 Access-Request packets, 14 ACK bit, 82, 83, 175, 176 ACL (access control list), 21, 22, 31, 34, 42, 51, 52, 127, 129, 375, 379-395, 406, 407, 441, 488, 492, 494 AD (administrative distance), 78, 140, 152, 154, 182, 197, 255, 329, 346, 359, 402, 478 AD (advertised distance), 308, 309, 350 Address family configuration mode, 281, 353–356, 497, 498 Adjacency tables, 78 AES (Advanced Encryption Standard), 50, 51 AH (Authentication Header), 289 All OSPF Designated Routers address, 228 All OSPF Routers address, 228, 235 All OSPFv3 Designated Routers address, 274 Anycast addresses, 97 APIPA (Automatic Private IP Addressing), 103 AppleTalk, 311 Application layer, 79, 80, 83, 102 ARP (Address Resolution Protocol), 144, 145, 148, 149, 426, 427, 450 **ARP** requests, 144 AS (autonomous system), 78, 158, 230, 292, 302, 321, 373, 401, 454, 502, 504, 506 AS-path attribute, 456, 468, 470, 492, 502 ASBR (autonomous system border router), 227, 230, 231, 241, 244, 246, 247, 255, 261, 267, 275, 292, 401, 403-405 ASBR Summary LSAs, 241, 244, 267, 275, 292 **ASDOT, 456** ASN (autonomous system number), 54, 314, 319, 324, 328, 377, 456, 457, 471, 472, 474, 477, 479, 480, 492, 502, 504 ASPLAIN, 456 Asymmetric routing, 370, 371 Asymmetric routing configurations, 406 Authenticating with AAA, 13 Authentication keys, 33 AuthNoPriv, 50, 74 AuthPriv, 50, 74

Automatic allocation, 102 Automatic summarization, 187, 193, 197, 202, 227, 301, 302, 324, 340, 359, 401, 402, 478 AUX (auxiliary), 8–11, 17, 19

В

Backbone areaa, 227, 230, 231, 245 BDR (backup designated router), 232, 233, 235–240, 257-260, 286, 296 **BECN** (backward explicit congestion notification), 426 Bellman-Ford algorithm, 189, 202 BGP (Border Gateway Protocol), 159, 374, 446, 454-507 **BGP** neighbor messages Keepalive, 464 Notification, 464 Open, 464 Update, 464, 468 BGP speakers, 463, 464, 466–468, 473, 474, 479, 481, 492 **BOOTP** (Bootstrap Protocol), 66 Boson lab exercises, 75, 183, 223, 297, 367, 451, 507

С

CBC (Cipher Block Chaining), 50 **CDP** (Cisco Discovery Protocol), 66 CE (customer edge), 459, 504 CEF (Cisco Express Forwarding), 141, 144, 145, 148, 149, 405, 440 CE routers, 460, 461, 504 Certificate-based authentication methods, 31 **CHAP** (Challenge Handshake Authentication Protocol), 412, 414, 416-419, 448 CHAP authentication, 414, 416, 417 Cisco-proprietary protocols, 14, 70 Cisco Easy Virtual Network, 408, 419, 440, 441, 443 Commands aaa accounting, 20 aaa authentication, 15, 17, 19, 20 aaa authorization, 20 aaa group server radius, 17 aaa group server tacacs+, 19 aaa new-model, 15 absolute, 388 access-class, 21, 22 access-list, 21, 127, 129, 382, 383, 385, 389 address-family, 354 address-family ipv4 unicast, 281, 497, 498 address-family ipv6 unicast, 281, 497, 498 address ipv4, 16, 18 address prefix, 115

af-interface, 356, 358 area, 281, 404 area authentication, 270 area authentication message-digest, 270 area nssa, 250, 279 area stub, 250, 279 area virtual-link, 250 authentication key-chain, 200, 271, 337, 351, 358 authentication mode md5, 200, 358 auto-cost reference-bandwidth, 251 auto-summary, 193, 324, 402 bandwidth, 157, 253, 307, 327 bgp default local-preference, 490 cdp enable, 66 cdp run, 66 clear adjacency, 148, 149 clear cef table, 149 clear ip arp, 148, 149 clear ip cache, 149 clear ip ospf process, 249 clear ip route, 149 clear ipv6 ospf process, 278 clock set, 27 clock timezone, 27 connect, 12 cryptographic-algorithm, 271 crypto key generate rsa, 23 debug, 2, 40-42, 336 debug eigrp packets all, 336 debug eigrp packets hello, 336 debug eigrp packets terse, 336 debug ip eigrp, 336 debug ip packet, 42 debug ppp authentication, 415 debug ppp authentication chap, 416 debug ppp negotiation, 411 default-information originate, 194, 251, 279 default-metric, 375-377, 493 default-router, 116 delay, 327 deny (ACL rules), 22 dialer pool, 423 disable, 11 distance, 156 distribute-list, 390 dns-server, 116 domain-name, 116 eigrp router-id, 313, 324, 343, 354 eigrp stub, 324, 325, 355, 362 eigrp upgrade-cli, 352 enable, 11 enable password, 4, 7, 8, 11 enable secret, 4, 6 encapsulation frame-relay, 425

encapsulation ppp, 411, 423 exit, 11 frame-relay map, 426, 427 frequency, 60, 64 hello-interval, 356 help, 11 hold-time, 356 hostname, 413 icmp-echo, 60 interface dialer, 423 interface tunnel, 432 ip access-list extended, 386, 387 ip access-list standard, 382, 383 ip address, 432 ip address dhcp, 113 ip address negotiated, 423 ip authentication key-chain eigrp, 337 ip authentication mode eigrp, 337 ip bootp server, 66 ip cef, 144 ip dhcp-server, 66 ip dhcp client lease, 113 ip dhcp excluded-address, 115 ip dhcp pool, 115 ip domain name, 23 ip flow-export destination, 55 ip flow-export version, 55 ip flow ingress, 55 ip hello-interval eigrp, 327, 356 ip helper-address, 118 ip hold-time eigrp, 327, 356 ip http-server, 67 ip http secure-server, 67 ip nat inside, 125-127, 129 ip nat outside, 125, 129 ip nat pool, 127 ip nhrp redirect, 438 ip nhrp shortcut, 438 ip ospf authentication, 269, 271 ip ospf authentication-key, 269 ip ospf authentication message-digest, 269 ip ospf cost, 157, 253 ip ospf message-digest-key, 269, 271 ip ospf mtu-ignore, 240 ip ospf priority, 237, 240 ip policy route-map, 396 ip prefix-list, 392, 488 ip rip authentication key-chain, 200 ip rip authentication mode, 200 ip rip receive version, 195 ip rip send version, 195 ip route, 61, 150-152, 156 ip route-cache, 143 ip sla key-chain, 65

ip sla responder, 63, 64 ip sla schedule, 60, 64 ip split-horizon, 195 ip summary-address eigrp, 402 ip summary-address rip, 402 ip tcp adjust-mss, 85 ip tcp window-size, 86, 90 ipv6 address, 107, 114, 205, 220, 277, 342, 433 ipv6 address autoconfig, 114 ipv6 authentication key-chain eigrp, 351 ipv6 authentication mode eigrp, 351 ipv6 dhcp pool, 115 ipv6 dhcp relay destination, 118 ipv6 eigrp, 344 ipv6 enable, 205, 220, 277, 342 ipv6 nat, 135 ipv6 nd other-config-flag, 116 ipv6 ospf area, 280, 282 ipv6 ospf authentication ipsec spi, 289 ipv6 ospf encryption ipsec spi, 289 ipv6 rip, 208, 209, 220, 222 ipv6 route, 152 ipv6 router eigrp, 343 ipv6 router ospf, 278 ipv6 router rip, 206 ipv6 unicast-routing, 152, 205, 277, 342 ip verify unicast source reachable-via, 406 key, 16, 18, 65, 200, 271, 337, 351 key-string, 65, 200, 271, 337, 351 key chain, 65, 200, 271, 337, 351, 358 lease, 116 line. 21 logging console, 37, 38, 42, 72 logging host, 38 logging monitor, 37 logging trap, 38 login, 9 login authentication, 17, 19 login local, 10 logout, 11 match, 394, 395, 400, 488, 492, 494 maximum-paths, 193, 207, 252, 326, 359 metric weights, 326, 364 nat64 enable, 135 nat64 translation, 135 neighbor, 240 neighbor activate, 497, 498 neighbor ebgp-multihop, 467, 474, 506 neighbor next-hop-self, 485, 486 neighbor password, 495 neighbor peer-group, 475 neighbor remote-as, 474, 497, 498 neighbor route-map, 488, 489, 492, 494 neighbor update-source, 474

neighbor weight, 487, 489 network, 115, 187, 192, 203, 209, 249, 274, 280, 324, 340, 344, 354, 466, 467, 473, 497, 498, 506 no debug all, 41, 336 no service, 67 ntp access-group, 34 ntp authenticate, 33 ntp authentication-key, 33 ntp broadcast client, 28 ntp disable, 66 ntp master, 27 ntp peer, 29 ntp server, 25, 27, 33 ntp source, 32 ntp trusted-key, 33 ospfv3 area, 282 ospfv3 authentication ipsec spi, 289 ospfv3 encryption ipsec spi, 289 ospfv3 ipv4, 282 ospfv3 ipv6, 282 passive-interface, 193, 251, 278, 281, 326, 343, 356, 357 password, 9 periodic, 388 permit, 387 permit (ACL rules), 22 ping, 138, 434 ppp authentication chap, 416, 417 ppp authentication pap, 414, 417 pppoe-client dial-pool-number, 423 ppp pap sent-username, 414 radius server, 16, 17 redistribute, 375, 377, 397, 399 RFC 7868, 338 rlogin, 12 route-map, 251, 375, 395, 396, 488 router-id, 249, 250, 278, 281 router bgp, 472, 497, 498 router eigrp, 324, 354, 376 router ospf, 249, 376 router ospfv3, 281 router rip, 192, 376 server name, 17, 19 service dhcp, 115 service password-encryption, 6, 7 service tcp-small-servers, 67 service udp-small-servers, 67 set as-path prepend, 492 set ipv6 next-hop, 497 set weight, 488, 489 show adjacency, 148 show clock, 27 show flow-sampler, 58 show frame-relay map, 427

show interface, 258 show interfaces, 411 show interfaces tunnel, 435 show ip access-lists, 12 show ip arp, 148 show ip bgp, 477, 481, 486, 499 show ip bgp ipv4 unicast, 499 show ip bgp ipv6 unicast, 499 show ip bgp neighbors, 477, 480 show ip bgp summary, 477, 479 show ip cache, 57, 58, 148 show ip cache flow, 57 show ip cache verbose flow, 58 show ip cef, 148 show ip eigrp interfaces, 330 show ip eigrp interfaces detail, 328, 330, 347 show ip eigrp neighbors, 328, 331, 332, 348 show ip eigrp topology, 328, 334, 335 show ip eigrp topology all-links, 328, 335 show ip eigrp traffic, 336 show ip flow export, 56 show ip flow interface, 56 show ip interface brief, 424, 435 show ip nat translations, 126, 128, 130 show ip ospf, 254, 256 show ip ospf database, 254, 262–268 show ip ospf interface, 254, 257, 258 show ip ospf neighbor, 238, 254, 259 show ip protocols, 196, 197, 211, 254–256, 284, 328, 329, 346, 477, 478, 487 show ip rip database, 196, 198 show ip route, 147, 156, 199, 261, 333, 378, 434 show ip route bgp, 477, 483 show ip route eigrp, 328, 333 show ip route ospf, 254, 261 show ip route rip, 196, 199 show ip sla statistics, 62 show ipv6 eigrp interfaces, 345, 347 show ipv6 eigrp neighbors, 345, 348 show ipv6 eigrp topology, 345, 350 show ipv6 eigrp topology all-links, 345, 350 show ipv6 ospf, 283, 285 show ipv6 ospf database, 283, 288 show ipv6 ospf neighbor, 283, 286 show ipv6 protocols, 210, 211, 283, 284, 345, 346 show ipv6 rip, 210, 212 show ipv6 rip database, 210, 213 show ipv6 rip next-hops, 210, 214 show ipv6 route, 215, 287 show ipv6 route eigrp, 345, 349 show ipv6 route ospf, 283, 287 show ipv6 route rip, 210, 215 show logging, 12, 38 show ntp associations, 30

show ntp status, 30 show ospfv3 database, 283, 288 show ospfv3 neighbor, 283, 286 show ppp all, 411 show pppoe session, 424 show running-config, 4, 5, 10, 187, 411 show snmp, 52 show snmp group, 52 show snmp user, 52 show snmp view, 52 show track, 62 snmp-server community, 49 snmp-server enable traps, 44, 45 snmp-server group, 51 snmp-server host, 44, 49, 50, 74 snmp-server user, 51 snmp-server view, 51 summary-address, 404 tacacs server, 18, 19 telnet, 12 terminal monitor, 42 time-range, 388 timers, 207 timers basic, 193, 207 traceroute, 138 track, 61 transport input, 21, 23 tunnel destination, 433 tunnel mode gre ip, 432, 433 tunnel source, 433 udp-jitter, 64 username password, 6, 10, 15, 413, 414 variance, 310, 359 version, 192 Composite metrics, 303, 305, 306, 327, 333, 339, 349, 364, 377 CON (console), 8-11, 15, 17, 19 **Congestion avoidance**, 91 Counting to infinity, 164, 165, 167, 168, 190 CPE (customer premises equipment), 419 CST (Central Standard Time), 27

D

DBD (Database Descriptor), 238, 239, 241, 242 DCE (data communications equipment), 425 DE (discard eligible), 426 Debugging, 36, 41, 42, 72 DES (Data Encryption Standard), 50 DF (Do-Not-Fragment), 84 DF bit, 84 DHCP (Dynamic Host Configuration Protocol), 66, 78, 102–107, 113, 115–118, 450 DHCP Acknowledgment, 106

DHCP Discover, 103 DHCP Offer, 104 DHCP pool configuration mode, 115, 116 **DHCP Request**, 105 **DHCPv4** (Dynamic Host Configuration Protocol version 4), 102, 110, 111, 113 **DHCPv6** (Dynamic Host Configuration Protocol version 6), 95, 101, 102, 109-112, 114-116 Dijkstra algorithm, 229, 273 **Discard adjacency**, 145 Distance-vector routing protocols, 160, 161, 163, 164, 167, 170, 172, 189, 202, 301 Distribute lists, 359, 370, 379, 390, 391, 475 DLCI (data-link connection identifier), 426, 427, 450 **DMVPN (Dynamic Multipoint Virtual Private** Network), 370, 408, 436-438 **DMVPN Phase 1, 437 DMVPN Phase 2, 438 DMVPN Phase 3, 438** DNS (Domain Name System), 104, 111, 112, 116, 120 DR (designated router), 232, 233, 235–240, 243, 257-260, 265, 294, 296 Drop adjacency, 145 DSP (digital signal processor), 45 DST (Daylight Saving Time), 27 DTE (data terminal equipment), 425 DUAL (Diffusing Update Algorithm), 303, 304, 308, 309, 321, 339, 364 Dual-homed configuration, 458, 460, 462, 504 Dual stack, 133 **Dynamic allocation**, 102 Dynamic NAT, 78, 121, 123, 124, 127, 128 Dynamic routes, 153, 156 Dynamic routing, 78, 151, 153, 156, 394, 436-439, 454, 463

Ε

EAP (Extensible Authentication Protocol), 14 eBGP (external Border Gateway Protocol), 465-467, 469-471, 474, 478, 480, 483, 485, 492-494, 502, 506 eBGP peers, 467, 492-494, 502, 506 EGP (exterior gateway protocol), 78, 159, 454, 462, 470, 482 **EIGRP** (Enhanced Interior Gateway Routing Protocol), 148, 153, 157, 171, 182, 300-367, 372, 398, 431, 440, 446, 473 EIGRP for IPv4, 300, 301, 311, 313, 324, 328, 338-340, 343, 347, 348, 351, 402 EIGRP for IPv6, 300, 313, 338–351 EIGRP key chain authentication, 337 **EIGRP** message types Acknowledgment messages, 312, 366 Hello messages, 311, 312, 314, 316, 330, 366

Query messages, 308, 312, 321, 366 Reply messages, 312, 321, 366 Update messages, 312, 366 EIGRP named mode, 352-359 Address family configuration mode config-router-af, 353 Address family interface configuration mode config-router-af-interface, 353 Address family topology configuration mode config-router-af-topology, 353 EIGRP router configuration mode, 310, 313, 354, 372, 376, 377, 402 Equal-cost load balancing, 189, 193, 202, 207, 212, 220, 229, 273, 303, 310, 326, 339, 346 ESP (Encapsulating Security Protocol), 289 EtherChannel, 443 EUI (extended unique identifier), 101, 107–109, 112 EUI-64, 101, 107-109, 112 EVN (Easy Virtual Network), 370, 408, 440, 440-443, 441, 442, 443 Extended ACLs, 21, 380, 384–388 External LSAs, 241, 244, 268 **External route summarization**, 403

F

Fast switching, 141, 143, 144, 145, 148, 149 FD (feasible distance), 308–310, 326, 334, 350 Feasible successor, 304, 308–310, 321, 326, 334, 335 FECN (forward explicit congestion notification), 426 FIB (Forwarding Information Base), 144, 148, 149, 405, 406 Frame Relay, 195, 232, 315, 370, 408, 425–429, 450 FTP (File Transfer Protocol), 79, 386 Full-mesh topologies, 429

G

Glean adjacency, 146 Global configuration mode, 15, 16, 18, 25, 32–34, 49, 60, 61, 63, 66, 67, 115, 135, 143, 144, 150, 152, 192, 205, 206, 249, 277, 278, 324, 342, 343, 392, 413, 423, 432, 472 Global synchronization, 91–93, 175 Global unicast addresses, 100, 101, 178 GPS (global positioning system), 26, 30 GRE (Generic Routing Encapsulation), 370

GRE tunnels, 430, 431, 432

Η

HDLC (High-level Data Link Control), 233, 409 Hello packets, 171, 228, 234–236, 238, 242, 251, 296, 301, 302, 311, 314, 326, 336, 340

Hierarchical client/server design, 29 HMAC (Hash-based Message Authentication Code), 50, 271 Hold-down timers, 169 HTTP (Hypertext Transfer Protocol), 67, 386 HTTPS (Secure Hypertext Transfer Protocol), 67 Hub-and-spoke topology, 240, 425, 437, 438 Hub-and-spoke tunnel, 437 H values, 331 Hybrid routing protocols, 160

I

IANA (Internet Assigned Numbers Authority), 132, 178, 456, 457 iBGP (internal Border Gateway Protocol), 465-467, 469, 470, 474, 478, 485, 486, 490, 492, 502, 506 iBGP peers, 466, 490, 492, 506 ICMP (Internet Control Message Protocol), 59, 78, 385 ICMP Destination Unreachable messages, 80, 138 **ICMP Echo Reply messages, 138** ICMP Echo Request messages, 59, 138 **ICMP Time Exceeded messages**, 138 **ICMPv6 (Internet Control Message Protocol version** 6), 95, 137, 138 ICMPv6 Neighbor Advertisement messages, 138 **ICMPv6** Neighbor Solicitation messages, 138 **ICMPv6 Router Advertisement messages, 138 ICMPv6 Router Solicitation messages, 138** IETF (Internet Engineering Task Force), 14, 70, 101, 454, 462 IGP (interior gateway protocol), 78, 159, 160, 226, 300, 373, 374, 446, 454-456, 469, 470, 478, 482, 506 IGRP (Interior Gateway Routing Protocol), 300, 373 Implicit deny rule, 22, 380, 383, 387 Infinite metric, 167, 169, 373 Inside global addresses, 120, 126, 127, 129 Inside local addresses, 120, 126, 130 Inter-area routes, 261, 287 Interface configuration mode, 28, 55, 66, 113, 114, 125, 135, 157, 195, 200, 251, 253, 269, 271, 307, 326, 327, 337, 343, 351, 353, 356, 358, 402, 406, 411, 414, 416, 423, 425 Intra-area routes, 261 Intra-area route summarization, 403 Inverse ARP, 426, 427, 450 IP-to-MAC address bindings, 148 **IP prefixes, 144** IPSec (IP Security), 95, 203, 216, 274, 289, 351, 430, 431, 436, 438 IP SLA (IP Service Level Agreement), 40, 59-64 IP SLA Echo operations, 60, 64 **IP SLA Jitter operations**, 64

IPv4 (IP version 4), 16, 78, 178, 180, 187, 227, 294, 296, 300, 402, 454
IPv6 (IP version 6), 22, 78, 178, 180, 201, 205, 220, 272, 300, 495
IPX (Internetwork Packet Exchange), 311
IS-IS (Integrated System-to-Integrated System), 441
ISATAP (Intra-site Automatic Tunnel Addressing Protocol), 136
ISATAP tunneling, 136
ISP (Internet service provider), 100, 158, 231, 455, 457–461, 504

Κ

Kerberos authentication, 25 Keychain configuration mode, 65, 200, 271, 337, 351 Keychain key configuration mode, 65, 200, 271, 337, 351 K values, 305, 306, 314, 319, 326, 328, 329, 332, 364

L

Lab exercises, 75, 183, 223, 297, 367, 451, 507 Layer 2, 138, 144, 145, 238, 409, 426, 427, 440, 450 Layer 3, 53, 78, 141, 142, 145, 409, 426, 427, 430, 432, 440, 450 Layer 4, 79, 124 LCP (Link Control Protocol), 410, 414, 416, 420, 448 LFN (Long Fat Network), 90 Line configuration mode, 9, 10, 17, 19, 21-23 Link-local unicast addresses, 100, 178 Link-state routing protocols, 78, 160, 170–172, 227, 273.301 LMI (Local Management Interface), 426 Local preference attribute, 490 Log severity levels, 24, 36, 37, 45, 72 Loopback addresses, 233 LSA (link-state advertisement), 172, 226, 227, 235, 237, 239, 241–244, 246, 247, 262–268, 275, 285, 288, 292 LSAck (Link State Acknowledgment), 241, 242 LSA packets, 173 LSDB (link-state database), 172, 238, 241, 242, 246, 247, 254, 262, 263, 265-268, 283, 288 LSR (Link State Request), 241, 242 LSU (Link State Update), 241, 242

Μ

MAC (Media Access Control), 22, 107, 108, 148, 406, 420, 421, 424, 448, 450 Manual allocation, 102 Many-to-many mapping, 121 Many-to-one mapping, 121

Maximum counts, 167, 168 Maximum paths, 359 MD5 (Message Digest 5), 5, 7, 10, 33, 47, 50, 65, 200, 269-271, 337, 351, 358, 416, 495 MED (multi-exit discriminator), 374, 446, 469, 470, 484, 493, 494, 502 mGRE (multipoint Generic Routing Encapsulation), 436, 437 MIB (management information base), 43, 44, 46, 48, 49 MLP (Multilink Point-to-Point Protocol), 409, 419 **MP-BGP** (Multiprotocol Border Gateway Protocol), 454, 496, 497, 499 MPLS (Multiprotocol Label Switching), 439 MSS (maximum segment size), 85 MTU (maximum transmission unit), 84, 85, 238, 240, 376, 377, 434 Multiaccess networks, 235, 237 Multicast addresses, 97, 340 Multihomed configuration, 458, 461, 462, 504 Mutual redistribution, 398

Ν

Named ACLs, 22, 34, 380, 382, 386, 390 NAT (Network Address Translation), 78, 119, 180, 441 NAT-PT (Network Address Translation-Protocol **Translation**), 132, 134 NAT64 (Network Address Translation 64), 78, 132, 134, 180 NAT overloading, 121, 124 NAT translation, 120, 126, 128 Many-to-many mapping, 121 Many-to-one mapping, 121 One-to-one mapping, 121 NBMA (nonbroadcast multiaccess), 232, 233, 236, 238, 240, 296, 311, 315, 425 NCP (Network Control Protocol), 410, 420, 448 NDP (Neighbor Discovery Protocol), 137, 138 Neighbor relationships, 171, 172, 228, 232, 241, 254, 274, 302, 326, 328, 345, 454, 463, 477 NetFlow, 2, 40, 53–58, 440, 443 NetSim labs, 75, 183, 223, 297, 367, 451, 507 Network layer, 131, 134, 137, 420, 448 Network LSAs, 241, 243, 265 Network troubleshooting, 31 NHRP (Next-Hop Resolution Protocol), 436–438 NHRP redirects, 438 NLRI (Network Layer Reachability Information), 468, 481, 492, 496 NMS (network management system), 44 NoAuthNoPriv, 50, 74

NPTv6 (NAT Protocol Translation version 6), 78, 131, 180 NSA (National Security Agency), 12 NSF (nonstop forwarding), 419 NSSA (not-so-stubby area), 244, 247, 250, 268, 279, 292 NSSA LSAs, 244, 268 NTP (Network Time Protocol), 2, 24–35, 66, 111 NTPv3 (Network Time Protocol version 3), 35 NTPv4 (Network Time Protocol version 4), 35

Null adjacency, 145

0

OID (object ID), 46, 51, 52 One-to-one mapping, 121 OS (operating system), 80 OSI (Open Systems Interconnection), 79, 432 **OSI reference model** Application layer, 79, 80, 83, 102 Layer 2, 138, 144, 238, 409, 426, 427, 440, 450 Layer 3, 53, 78, 141, 142, 409, 426, 427, 430, 432, 440, 450 Layer 4, 79, 124 Network layer, 131, 134, 137, 420, 448 Session layer, 83 Transport layer, 79, 80, 83, 95, 311 OSPF (Open Shortest Path First), 153, 157, 173, 182, 189, 226–297, 300, 370, 398, 431, 446, 473 **OSPF** backbone area, 230 **OSPF** dead interval, 236 **OSPF** hello interval. 236 **OSPF** neighbor states, 238 2-Way, 238 Down, 238 Exchange, 238, 240 Exstart, 238, 240 Full, 239 Init, 238 Loading, 239 **OSPF normal areas, 230, 231, 245 OSPF NSSAs**, 247 OSPF router configuration mode, 251, 376, 377 OSPF router ID, 226, 233, 234, 255, 256 **OSPF router roles**, 230 **OSPF standard areas, 245** OSPF stub areas, 235, 245, 246, 250, 279 **OSPF totally NSSAs, 247 OSPF totally stubby areas, 247 OSPF** transit areas, 245, 250 **OSPFv2** (Open Shortest Path First version 2), 226-297, 302, 401 OSPFv2 authentication, 269-272, 440 **OSPFv2** key-chain authentication, 271

OSPFv3 (Open Shortest Path First version 3), 226–297 OSPFv3 router configuration mode, 278, 279, 281 OUI (Organizationally Unique Identifier), 108 Outside global addresses, 120, 126, 128 Outside local addresses, 120, 126, 128

Ρ

PA (Provider-Assigned), 457, 504 PA addressing, 457, 459, 460, 504 Packet switching methods, 78 PADI (PPPoE Active Discovery Initiation), 420, 421 PADO (PPPoE Active Discovery Offer), 420, 421 PADR (PPPoE Active Discovery Request), 420, 421 **PADS (PPPoE Active Discovery Session**confirmation), 420, 421 PADT (PPPoE Active Discovery Terminate), 420, 422 PAP (Password Authentication Protocol), 410, 412, 414-419, 448 PAT (Port Address Translation), 78, 95, 119–121, 124, 125, 129 Path-vector algorithms, 462, 468, 492 PDM (protocol-dependent module), 311 PDU (Protocol Data Unit), 80-83, 86, 175, 176 PI (Provider-Independent), 457, 504 PI addressing, 457, 461, 504 Plain-text authentication, 200, 269 PMTU (path maximum transmission unit), 84 Point-to-multipoint networks, 233 Point-to-point interfaces, 428 Point-to-point networks, 233 Point-to-point subinterfaces, 429 Poison reverse, 168, 169, 190, 212 POP3 (Post Office Protocol 3), 117 PPP (Point-to-Point Protocol), 233, 370, 408–420, 423, 448 PPP authentication, 410, 412, 420 **PPPoE** (Point-to-Point Protocol over Ethernet), 418-423, 448 **PPPoE** stages Discovery stage, 420, 421, 448 Session stage, 420, 421, 448 Prefix lists, 370, 379, 391, 394, 475 Privileged EXEC mode, 4, 38, 41, 53, 62, 249, 264, 278, 424 Privilege levels, 4, 11, 12 Process switching, 141, 142, 145 Punt adjacency, 145 PVC (permanent virtual circuit), 419, 425, 427, 450

Q

Q count, 331

QoS (Quality of Service), 419

R

RADIUS (Remote Authentication Dial-In User Service), 10, 13–18, 70 **RARP** (Reverse Address Resolution Protocol), 450 **RED** (random early detection), 93 Redistribution, 212, 346, 372, 377 Remote access, 21, 22, 408 RFC (Request for Comments), 70, 100, 103, 120, 201, 227, 272, 281, 301, 338, 418, 462 RFC 1918, 120 RFC 2080, 201 RFC 2328, 227 RFC 2516, 418 RFC 2865, 70 RFC 2866, 70 RFC 3927, 103 RFC 4271, 462 RFC 4291, 100 RFC 5340, 272 RFC 5838, 281 RFC 7868, 301 RIB (routing information base), 190, 196, 203, 210 **RIP** (Routing Information Protocol), 153, 155, 186-223, 226, 227, 301, 303, 373, 441, 446 **RIPng (Routing Information Protocol next** generation), 186-223 RIPv1 (Routing Information Protocol version 1), 97, 186-223 **RIPv2** (Routing Information Protocol version 2), 153, 157, 159, 160, 162, 163, 186-223, 227, 271, 301, 337, 401, 402 RIPv2 key chain authentication, 337 **RIR** (regional Internet registry), 457 Route maps, 370, 379, 394, 397, 475 Route poisoning, 169 Route processing, 229 Router configuration mode, 156, 192-194, 206, 207, 249-252, 270, 278, 279, 281, 310, 324, 326, 343, 372, 376, 377, 390, 402, 404, 472–475, 490, 493, 497, 498 Router ID, 226, 233, 234, 237, 243, 249, 250, 255–257, 259, 263, 273, 278, 286, 294, 300, 313, 324, 329, 339, 343, 346, 354, 469, 470, 479-481 Router LSAs, 241, 243, 263, 275 Router packet switching, 141 **Router path selection**, 140 **Route summarization**, 370 Route tags, 370, 398 Routing loops, 168, 169 RSA encryption keys, 23 RTO (retransmission timeout), 331, 348 **RTP (Real-time Transport Protocol)**, 311

S

Scalability, 51, 322, 438, 454 SCTP (Stream Control Transmission Protocol), 55, 56 Selective acknowledgments, 89 Serno value, 335 Session layer, 83 SHA (Secure Hash Algorithm), 4, 7, 47, 50, 51, 271, 358 SIA (Stuck-In-Active), 321, 334, 336 Single-homed configuration, 458, 459, 504 SLA (Service Level Agreement), 2, 40, 59–64 **SLAAC (Stateless Address Automatic** Configuration), 112, 114 Sliding windowing, 88 SMTP (Simple Mail Transfer Protocol), 117 SNMP (Simple Network Management Protocol), 2, 40, 43-49, 51, 52, 74 **SNMP** security levels AuthNoPriv, 50, 74 AuthPriv, 50, 74 NoAuthNoPriv, 50, 74 **SNMPv1 (Simple Network Management Protocol** version 1), 43, 47-50 SNMPv2 (Simple Network Management Protocol version 2), 47 SNMPv2c (Simple Network Management Protocol version 2 community strings), 43, 44, 47-50 **SNMPv3 (Simple Network Management Protocol** version 3), 43, 44, 46-48, 50-52, 74 **SNMP** views, 46, 51 SPF (shortest path first), 173, 229, 256, 273, 285 SPI (security policy index), 289 Split horizon, 168, 169, 190, 195, 315, 428, 429 Spoke-to-spoke topology, 438 Spoke-to-spoke tunnel, 438 SRTT (smooth round-trip time), 331 SSH (Secure Shell), 22, 23, 42 SSL (Secure Sockets Layer), 67, 431 SSO (stateful switchover), 419 Standard ACLs, 21, 51, 380-383, 385, 390 Stateful DHCPv6, 111 **Stateless autoconfiguration**, 112 Static NAT, 121, 122, 123, 126 Static routes, 150-152, 152 Stratum values, 26 Subnet masks, 54, 104, 127, 150, 187, 227, 249, 265, 301, 324, 354, 392, 402, 432, 473 Summary LSAs, 241, 243, 266, 267, 275, 292 SVC (switched virtual circuit), 425

Symmetric active mode, 29 SYN bit, 82, 83, 175

Synchronized time, 25

Syslog, 38

Т

TACACS+ (Terminal Access Controller Access-Control System Plus), 13–15, 18, 19, 70 **TACACS+** server group configuration mode, 19 Tail drop, 92 TCP (Transmission Control Protocol), 14, 18, 54, 63, 67, 78, 79, 81, 82, 84, 85, 87–93, 130, 175, 176, 311, 371, 385, 387, 462, 463, 466, 498, 506 TCP starvation, 91, 94 **TCP State Bypass**, 371 TCP three-way handshake, 82-84 Telnet, 8, 21, 23, 42 **Teredo tunneling**, 136 **TFTP (Trivial File Transfer Protocol)**, 9, 117 ToS (Type of Service), 53, 58, 326, 364 Transport layer, 79, 80, 83, 95, 311 **Triggered updates, 169** TTL (Time To Live), 138 **Two-way redistribution**, 398 Type 1 external routes, 251, 374, 378 Type 2 external routes, 251, 370, 374, 378

U

UDP (User Datagram Protocol), 14, 16, 44, 50, 55, 56, 63, 67, 70, 78–80, 91, 94, 118, 175, 190, 203, 212, 311 UDP dominance, 91, 94 UDP Echo operations, 63 UDP Jitter operations, 63 Unequal-cost load balancing, 189, 202, 220, 229, 273, 303, 310, 326, 339 Unicast addresses, 97, 100, 101, 178, 188, 228, 302 uRPF (unicast Reverse Path Forwarding), 370, 405–407 Loose mode, 406 Strict mode, 406 UTC (Coordinated Universal Time), 27 Uunique local unicast addresses, 100, 178

V

VC (virtual circuit), 425, 426 VLAN (virtual LAN), 118, 440 VLSM (variable-length subnet mask), 187, 202, 227, 273, 301, 462 VNET (virtual network), 440, 442, 443 VoIP (Voice over IP), 59, 117 VPN (virtual private network), 408, 431, 436, 439 VRF (VPN Routing and Forwarding), 370, 439 VRF-lite, 408, 439, 440

VTY (virtual terminal), 6, 8, 9, 11, 15, 17, 19, 21, 22, 37

W

Weight attribute, 487, 488, 491, 502 Wildcard masks, 249, 324, 354, 382, 383, 385, 387 Windowing, 86 Window scaling, 90 WLC (wireless LAN controller), 117 WRED (weighted random early detection), 93, 94

Х

X.509, 35

Certification Candidates

Boson Software's ExSim-Max practice exams are designed to simulate the complete exam experience. These practice exams have been written by in-house authors who have over 30 years combined experience writing practice exams. ExSim-Max is designed to simulate the live exam, including topics covered, question types, question difficulty, and time allowed, so you know what to expect. To learn more about ExSim-Max practice exams, please visit <u>www.boson.com/exsim-max-practice-exams</u> or contact Boson Software.

Organizational and Volume Customers

Boson Software's outstanding IT training tools serve the skill development needs of organizations such as colleges, technical training educators, corporations, and governmental agencies. If your organization would like to inquire about volume opportunities and discounts, please contact Boson Software at <u>orgsales@boson.com</u>.

Contact Information

E-Mail:	support@boson.com
Phone:	877-333-EXAM (3926)
	615-889-0121
Fax:	615-889-0122
Address:	25 Century Blvd., Ste. 500
	Nashville, TN 37214

